Skip to main content
Log in

Influence of nonlinear effects on the efficiency of a thermoelectric generator

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We propose a nonlinear model for thermoelectric coupling which is based on the thermomass theory for heat conduction. We show that in this model, the second Kelvin relation and the classical Onsager relations are no longer satisfied simultaneously, namely, if one holds, then the other one breaks down, and viceversa. As a function of the different breaking, we evaluate the efficiency of a thermoelectric generator. The influence of the electric-charge gradient on the efficiency of thermoelectric coupling is investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Groot S.R., Mazur P.: Nonequilibrium Thermodynamics. North-Holland Publishing Company, Amsterdam (1962)

    Google Scholar 

  2. Gyarmati I.: Nonequilibrium Thermodynamics. Springer, Berlin (1970)

    Google Scholar 

  3. Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics, 4th edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  4. Nolas G.S., Sharp J., Goldsmid H.J.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, New York (2001)

    Book  Google Scholar 

  5. Lebon G., Jou D., Casas-Vázquez J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)

    Book  Google Scholar 

  6. Wang, X., Wang, Z. (eds.): Nanoscale Thermoelectrics. Springer, Berlin (2014)

    Google Scholar 

  7. Romano V., Zwierz M.: Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jou D., Cimmelli V.A., Sellitto A.: Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int. J. Heat Mass Transf. 55, 2338–2344 (2012)

    Article  Google Scholar 

  9. Sellitto A., Cimmelli V.A., Jou D.: Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires. Int. J. Heat Mass Transf. 57, 109–116 (2013)

    Article  Google Scholar 

  10. Hill T.L.: Thermodynamics of Small Systems. Dover, New York (1994)

    Google Scholar 

  11. Tzou D.Y.: Macro to Micro-Scale Heat Transfer. The Lagging Behaviour. Taylor and Francis, New York (1997)

    Google Scholar 

  12. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  13. Chen G.: Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)

    Google Scholar 

  14. Ferry D.K., Goodnick S.M.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  15. Cimmelli V.A., Sellitto A., Jou D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (2010)

    Article  Google Scholar 

  16. Sellitto A., Cimmelli V.A., Jou D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Phys. D 241, 1344–1350 (2012)

    Article  MATH  Google Scholar 

  17. Guyer R.A., Krumhansl J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  Google Scholar 

  18. Guyer R.A., Krumhansl J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  Google Scholar 

  19. Chen G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)

    Article  Google Scholar 

  20. Seccia L., Ruggeri T., Muracchini A.: Second sound and multiple shocks in superfluid helium. Z. Angew. Math. Phys. 60, 1074–1094 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cimmelli V.A., Sellitto A., Jou D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (2009)

    Article  Google Scholar 

  22. Cimmelli V.A., Sellitto A., Jou D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (2010)

    Article  Google Scholar 

  23. Tzou D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)

    Article  MATH  Google Scholar 

  24. Cao B.-Y., Guo Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007)

    Article  Google Scholar 

  25. Tzou D.Y., Guo Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)

    Article  Google Scholar 

  26. Dong Y., Cao B.-Y., Guo Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)

    Article  Google Scholar 

  27. Dong Y., Cao B.-Y., Guo Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (2012)

    Article  Google Scholar 

  28. Dong Y., Cao B.-Y., Guo Z.-Y.: Temperature in nonequilibrium states and non-Fourier heat conduction. Phys. Rev. E 87, 032150 (2013)

    Article  Google Scholar 

  29. Wang M., Yang N., Guo Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)

    Article  Google Scholar 

  30. Sellitto A., Cimmelli V.A.: A continuum approach to thermomass theory. J. Heat Transf. 134, 112402 (2012)

    Article  Google Scholar 

  31. Cattaneo C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  32. Wang M., Cao B.-Y., Guo Z.-Y.: General heat conduction equations based on the thermomass theory. Front. Heat Mass Transf. 1, 013004-1–013004-8 (2010)

    Article  Google Scholar 

  33. Wang M., Guo Z.-Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)

    Article  MATH  Google Scholar 

  34. Wang H.-D., Cao B.-Y., Guo Z.-Y.: Heat flow choking in carbon nanotubes. Int. J. Heat Mass Transf. 53, 1796–1800 (2010)

    Article  MATH  Google Scholar 

  35. Dong Y., Cao B.-Y., Guo Z.-Y.: Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. Phys. E 56, 256–262 (2014)

    Article  Google Scholar 

  36. Srivastava J.P.: The Physics of Phonons. Taylor and Francis, New York (1990)

    Google Scholar 

  37. Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  38. Onsager L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  39. Dufty J.W., Rubí J. M.: Generalized Onsager symmetry. Phys. Rev. A 36, 222–225 (1987)

    Article  MathSciNet  Google Scholar 

  40. Dong Y.: Clarification of Onsager reciprocal relations based on thermomass theory. Phys. Rev. E 86, 062101 (2012)

    Article  Google Scholar 

  41. Benenti G., Saito K., Casati G.: Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry. Phys. Rev. Lett. 106, 230602 (2011)

    Article  Google Scholar 

  42. Marlow C.A., Taylor R.P., Fairbanks M., Shorubalko I., Linke H.: Experimental investigation of the breakdown of the Onsager–Casimir relations. Phys. Rev. Lett. 96, 116801 (2006)

    Article  Google Scholar 

  43. Kuznetsov, V.L. : Functionally graded materials for termoelectric applications. In: Rowe, D.M. Thermoelectrics Handbook: Macro to Nano, Sect. 38, CRC Press, Boca Raton (2005)

  44. Kuznetsov V.L., Kuznetsova L.A., Kaliazin A.E., Rowe D.M.: High performance functionally graded and segmented Bi 2 Te 3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002)

    Article  Google Scholar 

  45. Ciancio V., Verhás J.: On the representation of dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 18, 39–50 (1993)

    Article  Google Scholar 

  46. Sellitto A., Cimmelli V.A.: Flux limiters in radial heat transport in silicon nanolyers. J. Heat Transf. 136, 071301 (2014)

    Article  Google Scholar 

  47. Birman V., Byrd L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 197–216 (2007)

    Article  Google Scholar 

  48. Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. A 460, 631–651 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Heida M., Málek J., Rajagopal K.R.: On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63, 145–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sellitto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogolino, P., Sellitto, A. & Cimmelli, V.A. Influence of nonlinear effects on the efficiency of a thermoelectric generator. Z. Angew. Math. Phys. 66, 2829–2842 (2015). https://doi.org/10.1007/s00033-015-0516-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0516-z

Mathematics Subject Classification

Keywords

Navigation