Skip to main content
Log in

Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study a metamaterial constructed with an isotropic material organized following a geometric structure which we call pantographic lattice. This relatively complex fabric was studied using a continuous model (which we call pantographic sheet) by Rivlin and Pipkin and includes two families of flexible fibers connected by internal pivots which are, in the reference configuration, orthogonal. A rectangular specimen having one side three times longer than the other is cut at 45° with respect to the fibers in reference configuration, and it is subjected to large-deformation plane-extension bias tests imposing a relative displacement of shorter sides. The continuum model used, the presented numerical models and the extraordinary advancements of the technology of 3D printing allowed for the design of some first experiments, whose preliminary results are shown and seem to be rather promising. Experimental evidence shows three distinct deformation regimes. In the first regime, the equilibrium total deformation energy depends quadratically on the relative displacement of terminal specimen sides: Applied resultant force depends linearly on relative displacement. In the second regime, the applied force varies nonlinearly on relative displacement, but the behavior remains elastic. In the third regime, damage phenomena start to occur until total failure, but the exerted resultant force continues to be increasing and reaches a value up to several times larger than the maximum shown in the linear regime before failure actually occurs. Moreover, the total energy needed to reach structural failure is larger than the maximum stored elastic energy. Finally, the volume occupied by the material in the fabric is a small fraction of the total volume, so that the ratio weight/resistance to extension is very advantageous. The results seem to require a refinement of the used theoretical and numerical methods to transform the presented concept into a promising technological prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abo-el Nour, N., Alshaikh, F., Giorgio, I., Della Corte, A.: A mathematical model for longitudinal wave propagation in a magnetoelastic hollow circular cylinder of anisotropic material under the influence of initial hydrostatic stress. Math. Mech. Solids (2015). doi:10.1177/1081286515582883

  2. Alibert, J.J., Della Corte, A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik (2015). doi:10.1007/s00033-015-0526-x

  3. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM-J. Appl. Math. Mech. 90(3), 231–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Altenbach H., Eremeyev V.A., Lebedev L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM-J. Appl. Math. Mech. 91(9), 699–710 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Assidi M., Ben Boubaker B., Ganghoffer J.F.: Equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48(20), 2920–2930 (2011)

    Article  Google Scholar 

  7. Andreaus U., Giorgio I., Madeo A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. J. Appl. Math. Phys. 66(1), 209–237 (2015)

    MathSciNet  Google Scholar 

  8. Berezovski, A., Giorgio, I., Della Corte, A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids. (2015). doi:10.1177/1081286515572244

  9. Bersani A.M., Giorgio I., Tomassetti G.: Buckling of an elastic hemispherical shell with an obstacle. Contin. Mech. Thermodyn. 25(2), 443–467 (2013)

    Article  MathSciNet  Google Scholar 

  10. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 1–24 (2015). doi:10.1007/s00205-015-0879-5

  11. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  12. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn (2014). doi:10.1007/s00161-014-0409-y

  13. Ciancio D., Carol I., Cuomo M.: Crack opening conditions at ‘corner nodes’ in fe analysis with cracking along mesh lines. Eng. Fract. Mech. 74(13), 1963–1982 (2007)

    Article  Google Scholar 

  14. Coman C.D.: Secondary bifurcations and localisation in a three-dimensional buckling model. Zeitschrift für Angewandte Mathematik und Physik ZAMP 55(6), 1050–1064 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Contrafatto L., Cuomo M., Fazio F.: An enriched finite element for crack opening and rebar slip in reinforced concrete members. Eng. Fract. Mech. 178(1–2), 1963–1982 (2012)

    Google Scholar 

  16. dell’Isola, F., D’Agostino, M,V., Madeo, A., Boisse, P., Steigmann, D.: Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: the case of standard bias extension test (submitted) (2015)

  17. Dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dos Reis F., Ganghoffer J.F.: Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 51, 314–321 (2012)

    Article  Google Scholar 

  19. D’Agostino M.V., Giorgio I., Greco L., Madeo A., Boisse P.: Continuum and discrete models for structures including (quasi-)inextensible elasticae with a view to the design and modeling of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

    Article  Google Scholar 

  20. Enakoutsa, K., Della Corte, A., Giorgio, I.: A model for elastic flexoelectric materials including strain gradient effects. Math. Mech. Solids (2015). doi:10.1177/1081286515588638

  21. Eremeev, V.A., Freidin, A.B., Sharipova, L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. In: Doklady Physics, vol. 48, pp. 359–363. Springer, Berlin (2003)

  22. Eremeyev V.A., Pietraszkiewicz W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125–152 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Eremeyev V.A., Pietraszkiewicz W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  24. Eremeyev V.A., Lebedev L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  MathSciNet  Google Scholar 

  25. Eremeyev, V.A., Pietraszkiewicz, WojciechL Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids (2015). doi:10.1177/1081286515582862

  26. Federico S., Grillo A., Herzog W.: A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J. Mech. Phys. Solids 52(10), 2309–2327 (2004). doi:10.1016/j.jmps.2004.03.010

    Article  MATH  MathSciNet  Google Scholar 

  27. Giorgio, I., Galantucci, L., Della Corte, A., Del Vescovo, D.: Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. Int. J. Appl. Electromagn. Mech. (2014). doi:10.3233/JAE-140148

  28. Goda I., Assidi M., Belouettar S., Ganghoffer J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  29. Greco L., Cuomo M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  Google Scholar 

  30. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47(2), 388–401 (2012)

    Article  Google Scholar 

  32. Grillo A., Federico S., Wittum G., Imatani S., Giaquinta G., Mićunović M.V.: Evolution of a fibre-reinforced growing mixture. Nuovo Cimento C 32C(1), 97–119 (2009)

    Google Scholar 

  33. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids (2014). doi:10.1177/1081286513515265

  34. Hilgers M.G., Pipkin A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45(1), 57–75 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hilgers M.G., Pipkin A.C.: Energy-minimizing deformations of elastic sheets with bending stiffness. J. Elast. 31(2), 125–139 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Laurent C.P., Durville D., Mainard D., Ganghoffer J.-F., Rahouadj R.: Designing a new scaffold for anterior cruciate ligament tissue engineering. J. Mech. Behav. Biomed. Mater. 12, 184–196 (2012)

    Article  Google Scholar 

  37. Laurent C.P., Durville D., Vaquette C., Rahouadj R., Ganghoffer J.F.: Computer-aided tissue engineering: application to the case of anterior cruciate ligament repair. Biomech. Cells Tissues 9, 1–44 (2013)

    Article  Google Scholar 

  38. Laurent C.P., Durville D., Wang X., Ganghoffer J.-F., Rahouadj R.: Designing a new scaffold for anterior cruciate ligament tissue engineering. Comput. Methods Biomech. Biomed. Eng. 13(S1), 87–88 (2010)

    Article  Google Scholar 

  39. Luongo A., Zulli D.: A non-linear one-dimensional model of cross-deformable tubular beam. Int. J. Non-Linear Mech. 66, 33–42 (2014)

    Article  Google Scholar 

  40. Luongo A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. 155(2), 249–271 (1992)

    Article  MATH  Google Scholar 

  41. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1-3), 133–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Madeo A., Neff P., Ghiba I.-D., Placidi L., Rosi G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 27(4-5), 551–570 (2013)

    Article  MathSciNet  Google Scholar 

  43. Madeo A., Placidi L., Rosi G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res. Nondestruct. Eval. 25(2), 99–124 (2014)

    Article  Google Scholar 

  44. Naumenko K., Eremeyev V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283–291 (2014)

    Article  Google Scholar 

  45. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 639–681 (2014). doi:10.1007/s00161-013-0322-9

  46. Nikopour, H., Selvadurai, A.P.S.: Torsion of a layered composite strip. Compos. Struct. 95, 1–4 (2013); cited By 0

  47. Nikopour, H., Selvadurai, A.P.S.: Concentrated loading of a fibre-reinforced composite plate: experimental and computational modeling of boundary fixity. Compos. Part B: Eng. 60, 297–305 (2014); cited By 1

  48. Placidi L., Hutter K.: An anisotropic flow law for incompressible polycrystalline materials. Zeitschrift fur Angewandte Mathematik und Physik 57, 160–181 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Placidi L., Hutter K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17, 409–451 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Placidi, L., Greve, Ralf, Seddik, H., Faria, S.H.: Continuum-mechanical, anisotropic flow model, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. (2010) 22, 221–237. The results obtained in this paper have been used in the entire PhD thesis of Dr. Seddik at the Low Temperature Institute in Sappore, Japan

  51. Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. (2014). doi:10.1007/s00161-014-0388-z

  52. Piccardo G., Ranzi G., Luongo A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  53. Piccardo G., Ranzi G., Luongo A.: A direct approach for the evaluation of the conventional modes within the gbt formulation. Thin-Walled Struct. 74, 133–145 (2014)

    Article  Google Scholar 

  54. Pipkin A.C.: Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math. 34(4), 415–429 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  55. Pipkin A.C., Rivlin R.S.: Minimum-weight design for pressure vessels reinforced with inextensible fibers. J. Appl. Mech. 30(1), 103–108 (1963)

    Article  MATH  Google Scholar 

  56. Pipkin A.C., Rogers T.G.: Plane deformations of incompressible fiber-reinforced materials. J. Appl. Mech. 38(3), 634–640 (1971)

    Article  MATH  Google Scholar 

  57. Pipkin A.C., Rogers T.G.: Infinitesimal plane wrinkling of inextensible networks. J. Elast. 17(1), 35–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  58. Pipkin A.C.: Stress analysis for fiber-reinforced materials. Adv. Appl. Mech. 19, 1–51 (1979)

    Article  MATH  Google Scholar 

  59. Pipkin, A.C.: Equilibrium of Tchebychev nets. In: The Breadth and Depth of Continuum Mechanics, pp. 287–303. Springer, Berlin (1986)

  60. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. Published online 20 February 2014. doi:10.1007/s00161-014-0338-9

  61. Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  62. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4-5), 623–638 (2014)

    Article  MathSciNet  Google Scholar 

  63. Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 cisterna di latina 17–21 march 2014 generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids (2015). doi:10.1177/1081286515576948

  64. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. J. Appl. Math. Mech. 94(10), 862–877 (2013)

    MathSciNet  Google Scholar 

  65. Rivlin R.S.: Plane strain of a net formed by inextensible cords. J. Ration. Mech. Anal. 4(6), 951–974 (1955)

    MATH  MathSciNet  Google Scholar 

  66. Rivlin, R.S.: Networks of inextensible cords. In: Collected Papers of RS Rivlin, pp. 566–579. Springer, Berlin (1997)

  67. Rivlin, R.S.: Plane strain of a net formed by inextensible cords. In: Collected Papers of RS Rivlin, pp. 511–534. Springer, Berlin (1997)

  68. Rogers T.G.: Crack extension and energy release rates in finitely deformed sheets reinforced with inextensible fibres. Int. J. Solids Struct. 18(8), 705–721 (1982)

    Article  MATH  Google Scholar 

  69. Sanchez-Moya V., Pipkin A.C.: Energy release rate for cracks in ideal composites. Int. J. Solids Struct. 13(6), 571–578 (1977)

    Article  MATH  Google Scholar 

  70. Sanchez-Moya V., Pipkin A.C.: Crack-tip analysis for elastic materials reinforced with strong fibres. Q. J. Mech. Appl. Math. 31(3), 349–362 (1978)

    Article  MATH  Google Scholar 

  71. Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Limam, A.: A micro-structural model for dissipation phenomena in the concrete. Int. J. Numer. Anal. Meth. Geomech. (2015). doi:10.1002/nag.2394

  72. Scerrato D., Giorgio I., Madeo A., Limam A., Darve F.: A simple non-linear model for internal friction in modified concrete. Int. J. Eng. Sci. 80, 136–152 (2014)

    Article  MathSciNet  Google Scholar 

  73. Selvadurai, A.P.S.: Bridged defects in uni-directionally-reinforced composites (2014); cited By 0

  74. Selvadurai, A.P.S.: Bridged defects in continuously and discretely reinforced solids. J. Eng. Math. (2015); cited By 0; Article in Press

  75. Selvadurai, A.P.S., Nikopour, H.: Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: experiments, theory and computations. Compos. Struct. 94(6), 1973–1981 (2012); cited By 7.

  76. Selvadurai, A.P.S., Nikopour, H.: Uniform loading of a cracked layered composite plate: experiments and computational modelling. Comput. Model. Eng. Sci. 85(3), 279–297 (2012); cited By 5

  77. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, p. 012018 (2011). IOP Publishing

  78. Steigmann D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46(7), 654–676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  79. Steigmann D.J.: A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J. Elast. 97(1), 97–101 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  80. Steigmann, D.J.: Refined theory for linearly elastic plates: laminae and laminates. Math. Mech. Solids (2011). doi:10.1177/1081286511419971

  81. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sinica 1–10

  82. Turco E., Aristodemo M.: A three-dimensional B-spline boundary element. Comput. Methods Appl. Mech. Eng. 155, 119–128 (1998)

    Article  MATH  Google Scholar 

  83. Wang W.-B., Pipkin A.C.: Inextensible networks with bending stiffness. Q. J. Mech. Appl. Math. 39(3), 343–359 (1986)

    Article  MATH  Google Scholar 

  84. Yang Y., Ching Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film. J. Nanomech. Micromech. 1, 60–71 (2011)

    Article  Google Scholar 

  85. Yang Y., Misra A.: Higher-order stress-strain theory for damage modeling implemented in an element-free galerkin formulation. Comput. Model. Eng. Sci. 64, 1–36 (2010)

    MATH  MathSciNet  Google Scholar 

  86. Yeremeyev V.A., Freidin A.B., Sharipova L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dell’Isola, F., Lekszycki, T., Pawlikowski, M. et al. Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66, 3473–3498 (2015). https://doi.org/10.1007/s00033-015-0556-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0556-4

Mathematics Subject Classification

Keywords

Navigation