Skip to main content
Log in

Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Two tests for woven fabrics with orthogonal fibres are examined using simplified kinematic assumptions. The aim is to analyse how different constitutive assumptions may affect the response of the specimen. The fibres are considered inextensible, and the kinematics of 2D continua with inextensible chords due to Rivlin is adopted. In addition to two forms of strain energy depending on the shear deformation, also two forms of energy depending on the gradient of shear are examined. It is shown that this energy can account for the bending of the fibres. In addition to the standard bias extension test, a modified test has been examined, in which the head of the specimen is rotated rather than translated. In this case more bending occurs, so that the results of the simulation carried out with the different energy models adopted differ more that what has been found for the BE test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer A.J.M., Soldatos K.P.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 42(2), 355–368 (2007)

    Article  Google Scholar 

  2. Nikopour H., Selvadurai A.: Torsion of a layered composite strip. Compos. Struct. 95, 1–4 (2013)

    Article  Google Scholar 

  3. Nikopour H., Selvadurai A.P.S.: Concentrated loading of a fibre-reinforced composite plate: experimental and computational modeling of boundary fixity. Compos. B Eng. 60, 297–305 (2014)

    Article  Google Scholar 

  4. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015). doi:10.1177/1081286513515265

  5. Federico S., Grillo A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)

    Article  Google Scholar 

  6. Andreaus U., Giorgio I., Lekszycki T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM Z. Angew. Math. Mech. 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giorgio I., Andreaus U., Lekszycki T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids (2015). doi:10.1177/1081286515616052

  8. Nadler B., Steigmann D.J.: A model for frictional slip in woven fabrics. C. R. Mec. 331(12), 797–804 (2003)

    Article  MATH  Google Scholar 

  9. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civ. Eng. (2016). doi:10.1080/19648189.2016.1144539

  10. Placidi L., Andreaus U., Della Corte A., Lekszycki T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lekszycki T., Olhoff N., Pedersen J.J.: Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos. Struct. 22(1), 15–31 (1992)

    Article  Google Scholar 

  12. Andreaus U., Chiaia B., Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375–398 (2013)

    Article  MathSciNet  Google Scholar 

  13. Placidi L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1–2), 119–137 (2016)

    Article  MathSciNet  Google Scholar 

  14. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4–5), 623–638 (2015)

    Article  MathSciNet  Google Scholar 

  15. Misra A., Singh V.: Micromechanical model for viscoelastic materials undergoing damage. Contin. Mech. Thermodyn. 25(2–4), 343–358 (2013)

    Article  MathSciNet  Google Scholar 

  16. Roveri N., Carcaterra A.: Damage detection in structures under traveling loads by Hilbert–Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  Google Scholar 

  17. Harrison P., Wiggers J., Long A.: Normalization of shear test data for rate-independent compressible fabrics. J. Compos. Mater. 42, 2315–2344 (2008)

    Article  Google Scholar 

  18. Bassett R., Postle R., Pan N.: Experimental methods for measuring fabric mechanical properties. Rev. Anal. Text. Res. J. 69(11), 866–875 (1999)

    Article  Google Scholar 

  19. Taha I., Abdin Y., Ebeid S.: Comparison of picture frame and Bias-Extension tests for the characterization of shear behaviour in natural fibre woven fabrics. Fibers Polym. 14(2), 338–344 (2013)

    Article  Google Scholar 

  20. Sharma S., Sutcliffe M., Chang S.: Characterisation of material properties for draping of dry woven composite material. Compos. A 34, 1167–1175 (2003)

    Article  Google Scholar 

  21. Luongo A., Zulli D., Piccardo G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2(4), 675–694 (2007)

    Article  Google Scholar 

  22. Piccardo G., Pagnini L.C., Tubino F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285 (2015)

    Article  MathSciNet  Google Scholar 

  23. Pignataro M., Rizzi N., Ruta G., Varano V.: The effects of warping constraints on the buckling of thin-walled structures. J. Mech. Mater. Struct. 4(10), 1711–1727 (2010)

    Article  Google Scholar 

  24. Bersani A.M., Giorgio I., Tomassetti G.: Buckling of an elastic hemispherical shell with an obstacle. Contin. Mech. Thermodyn. 25(2–4), 443–467 (2013)

    Article  MathSciNet  Google Scholar 

  25. Rizzi N.L., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  26. AminPour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Proceedings of the Eleventh International Conference on Computational Structures Technology. Civil-Comp Press, Stirlingshire (2012)

  28. Rizzi, N., Varano, V.: On the postbuckling analysis of thin-walled frames. In: Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press (2011)

  29. Pignataro, M., Ruta, G., Rizzi, N., Varano, V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 803–810. American Society of Mechanical Engineers (2009)

  30. Lomov S., Barburski M., Stoilova T., Verpoest I., Akkerman R., Loendersloot R., Ten Thije R.: Carbon composites based on multiaxial multiply stitched preforms. Part 3. Biaxial tension, picture frame and compression tests of the preforms. Compos. A 26, 1188–1206 (2005)

    Article  Google Scholar 

  31. Milani A., Nemes J., Lebrun G., Bureau M.: A comparative analysis of a modified picture frame test for characterization of woven fabrics. Polym. Compos. 31(4), 561–568 (2009)

    Google Scholar 

  32. Domskiené J., Strazdiené E.: Investigation of fabric shear behaviour. Fibres Text. East. Eur. 13(26–30), 561–568 (2005)

    Google Scholar 

  33. Harrison P., Clifford M., Long A.: Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos. Sci. Technol. 64, 1453–1465 (2004)

    Article  Google Scholar 

  34. Härtel F., Harrison P.: Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics. Compos. A 37, 61–69 (2014)

    Article  Google Scholar 

  35. Lee W., Padvoiskis J., Cao J., de Luycker E., Boisse P., Morestin F., Chen J., Sherwood J.: Bias-extension of woven composite fabrics. Int. J. Mater. Form. 1(suppl. 1), 895–898 (2008)

    Article  Google Scholar 

  36. Cao J., Akkerman R., Boisse P., Chen J., Cheng H., de Graaf E., Gorczyca J., Harrison P., Hivet G., Launay J., Lee W., Liu L., Lomov S., Long A., de Luycker E., Morestin F., Padvoiskis J., Peng X., Sherwood J., Stoilova T., Tao X., Verpoest I., Willems A., Wiggers J., Yu T., Zhu B.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. A 39, 1037–1053 (2008)

    Article  Google Scholar 

  37. Hivet G., Duong A.V.: A contribution to the analysis of the intrinsic shear behaviour of fabrics. J. Compos. Mater. 45(6), 695–717 (2011)

    Article  Google Scholar 

  38. Launay J., Hivet G., Duong A., Boisse P.: Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos. Sci. Technol. 68(2), 506–515 (2008)

    Article  Google Scholar 

  39. Lomov S., Verpoest I.: Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos. Sci. Technol. 66(7–8), 919–923 (2006)

    Article  Google Scholar 

  40. Lee W., Cao J., Badel P., Boisse P.: Non-orthogonal constitutive model for woven composites incorporating tensile effect on shear behavior. Int. J. Mater. Form. 1(suppl. 1), 891–894 (2008)

    Article  Google Scholar 

  41. Harrison P., Abdiwi F., Guo Z., Potluri P., Yu W.: Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics. Compos. A 43(6), 903–914 (2012)

    Article  Google Scholar 

  42. Harrison P.: Normalisation of biaxial bias extension test results considering shear tension coupling. Compos. A 43, 1546–1554 (2012)

    Article  Google Scholar 

  43. Boisse P., Borr M., Buet K., Cherouat A.: Finite element simulations of textile composite forming including the biaxial fabric behavior. Compos. B 28(41), 453–4644 (1997)

    Article  Google Scholar 

  44. Dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. (submitted)

  45. Carcaterra A., dell’Isola F., Esposito R., Pulvirenti M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Alibert J.-J., Della Corte A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cecchi A., Rizzi N.L.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38(1), 29–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Goda I., Assidi M., Ganghoffer J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)

    Article  Google Scholar 

  50. Rahali Y., Giorgio I., Ganghoffer J., dell’Isola F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    Article  MathSciNet  Google Scholar 

  51. Soubestre J., Boutin C.: Non-local dynamic behavior of linear fiber reinforced materials. Mech. Mater. 55, 16–32 (2012)

    Article  Google Scholar 

  52. Zhang Z., Wang C.M., Challamel N., Elishakoff I.: Obtaining Eringen s length scale coefficient for vibrating nonlocal beams via continualization method. J. Sound Vib. 333(20), 4977–4990 (2014)

    Article  Google Scholar 

  53. Challamel N., Wang C.M., Elishakoff I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. A Solids 44, 125–135 (2014)

    Article  MathSciNet  Google Scholar 

  54. Pipkin A.: Some developments in the theory of inextensible networks. Q. Appl. Math. 38(3), 343–355 (1980)

    MathSciNet  MATH  Google Scholar 

  55. Pipkin A.: Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math. 34(4), 415–429 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rivlin R.: Plane strain of a net formed by inextensible chords. J. Ration. Mech. Anal. 4(6), 951–974 (1955)

    MathSciNet  MATH  Google Scholar 

  57. dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Steigmann D.J., dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  Google Scholar 

  59. dell’Isola F., Steigmann D., Della Corte A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2016)

    Article  Google Scholar 

  60. dell’Isola, F., Della Corte, A., Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int. J. Non-Linear Mech. (2015). doi:10.1016/j.ijnonlinmec.2015.10.010

  61. dell’Isola F., Della Corte A., Greco L., Luongo A.: Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  62. dell’Isola F., Lekszycki T., Pawlikowski M., Grygoruk R., Greco L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. dell’Isola F., Giorgio I., Pawlikowski M., Rizzi N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 20150790 (2016)

    Article  Google Scholar 

  64. dell’Isola F., Seppecher P., Della Corte A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A 471(2183), 20150415 (2015)

    Article  MathSciNet  Google Scholar 

  65. dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM Z. Angew. Math. Mech. 93(12), 914–927 (2013)

    Article  MathSciNet  Google Scholar 

  67. Bleustein J.L.: A note on the boundary conditions of Toupin’s strain-gradient theory. Int. J. Solids Struct. 3(6), 1053–1057 (1967)

    Article  Google Scholar 

  68. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  69. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Kon. Ned. Akad. Wet. Ser. B. 67(1), 17–44 (1964)

  70. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM J. Appl. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Altenbach J., Altenbach H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  72. Eremeyev V.A., Pietraszkiewicz W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  73. Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 Cisterna 678 di Latina 17–21 March 2014 Generalized continua and their applications to the de679 sign of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids (2015). doi:10.1177/1081286515576948

  74. Berezovski A., Giorgio I., Della Corte A.: Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Math. Mech. Solids 21(1), 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  75. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  76. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  77. Cazzani A., Malagù M., Turco E., Stochino F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21, 183–209 (2016)

    MathSciNet  MATH  Google Scholar 

  78. Fischer P., Klassen M., Mergheim J., Steinmann P., Müller R.: Isogeometric analysis of 2D gradient elasticity. Comput. Mech. 47(3), 325–334 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  79. Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Greco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuomo, M., dell’Isola, F. & Greco, L. Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Angew. Math. Phys. 67, 61 (2016). https://doi.org/10.1007/s00033-016-0653-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0653-z

Mathematics Subject Classification

Keywords

Navigation