Skip to main content
Log in

A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young’s modulus varies in space and time; (ii) nutrients’ diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis–Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young’s modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J., Della Corte A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Zeitschrift für angewandte Mathematik und Physik 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amin Pour, H., Rizzi, N., Salerno, G.: A one-dimensional beam model for single-wall carbon nano tube column buckling. In: Civil-Comp Proceedings (2014)

  4. Aminpour, H., Rizzi, N.: On the continuum modelling of carbon nano tubes. In: Civil-Comp Proceedings, vol. 108 (2015)

  5. Aminpour H., Rizzi N.: On the modelling of carbon nano tubes as generalized continua. Adv. Struct. Mater. 42, 15–35 (2016)

    Article  Google Scholar 

  6. AminPour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreaus U., Giorgio I., Madeo A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik ZAMP 66(1), 209–237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bassom A.P., Ilchmann A., Voss H.: Oxygen diffusion in tissue preparations with Michaelis–Menten kinetics. J. Theor. Biol. 185(1), 119–127 (1997)

    Article  Google Scholar 

  9. Bersani A.M., Giorgio I., Tomassetti G.: Buckling of an elastic hemispherical shell with an obstacle. Continuum Mech. Thermodyn. 25(2-4), 443–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bilotta A., Formica G., Turco E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    Article  MATH  Google Scholar 

  11. Brey E.M., McIntire L.V., Johnston C.M., Reece G.P., Patrick C.W.: Three-dimensional, quantitative analysis of desmin and smooth muscle alpha actin expression during angiogenesis. Ann. Biomed. Eng. 32(8), 1100–1107 (2004)

    Article  Google Scholar 

  12. Buenzli P.R.: Osteocytes as a record of bone formation dynamics a mathematical model of osteocyte generation in bone matrix. J. Biomech. 364, 418–427 (2014)

    Google Scholar 

  13. Carcaterra A., dell’Isola F., Esposito R., Pulvirenti M.: Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cazzani A., Malagù M., Turco E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562–577 (2014)

    Article  MathSciNet  Google Scholar 

  15. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik. (2016). doi:10.1002/zamm.201500280

  16. Ciancio D., Carol I., Cuomo M.: A method for the calculation of inter-element stresses in 3D. Comput. Methods Appl. Mech. Eng. 254, 222–237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Claes L., Augat P., Suger G., Wilke H.-J.: Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15(4), 577–584 (1997)

    Article  Google Scholar 

  18. COMSOL. Comsol multiphysics v. 5.1. www.comsol.com, COMSOL AB, Stockholm, Sweden

  19. Daşu A., Toma-Daşu I., Karlsson M.: Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48(17), 2829–2842 (2003)

    Article  Google Scholar 

  20. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  21. dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. dell’Isola, F., Bucci, S., Battista, A.: Against the fragmentation of knowledge: the power of multidisciplinary research for the design of metamaterials. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, vol. 60, pp. 523–545. Springer (2016). doi:10.1007/978-981-10-0959-4_28

  23. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, vol. 42, pp. 77–128. Springer (2016). doi:10.1007/978-3-319-31721-2_5

  24. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids (2016). doi:10.1177/1081286515616034

  25. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society of London A, vol. 472, pp 20150790 (2016)

  26. dell’Isola F., Steigmann D., Della Corte A.: Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  27. Evdokymov N., Altenbach H., Eremeyev V.A.: Collapse criteria of foam cells under various loading. PAMM 11(1), 365–366 (2011)

    Article  Google Scholar 

  28. Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Civil-Comp Proceedings, vol. 99 (2012)

  29. Gabriele, S., Rizzi, N., Varano, V.: A one-dimensional nonlinear thin walled beam model derived from Koiter shell theory. In: Civil-Comp Proceedings, vol. 106 (2014)

  30. Gabriele, S., Rizzi, N., Varano, V.: A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int. J. Solids Struct. (2015). doi:10.1016/j.ijsolstr.2016.04.017

  31. Giorgio I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  32. Giorgio I., Andreaus U., Madeo A.: The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Contin. Mech. Thermodyn. 28(1-2), 21–40 (2016)

    Article  MathSciNet  Google Scholar 

  33. Giorgio, I., Andreaus, U., Scerrato, D., Braidotti, P.: Modeling of a non-local stimulus for bone remodeling process under cyclic load: Application to a dental implant using a bioresorbable porous material. Math. Mech. Solids (2016). doi:10.1177/1081286516644867

  34. Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. (2016). doi:10.1007/s10237-016-0765-6

  35. Giorgio I., Della Corte A., Dell’Isola F., Steigmann D.J.: Buckling modes in pantographic lattices. Comptes rendus Mecanique 344(7), 487–501 (2016)

    Article  Google Scholar 

  36. Giorgio I., Grygoruk R., dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  37. Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J. Environ. Civil Eng. (2016). doi:10.1080/19648189.2016.1144539

  38. Goodship A.E., Kenwright J.: The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Joint J 67(4), 650–655 (1985)

    Google Scholar 

  39. Greco L., Cuomo M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–1540 (2012)

    Article  Google Scholar 

  40. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  41. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Nonlinear Contin. Theor. 47(2), 388–401 (2012)

    Google Scholar 

  42. Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. J. Appl. Math. Mech. 92(6), 426–444 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Luongo A., Piccardo G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4), 1027–1047 (2005)

    Article  Google Scholar 

  44. Misra A., Poorsolhjouy P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1-2), 215–234 (2016)

    Article  MathSciNet  Google Scholar 

  45. Mullender M.G., Huiskes R.: Proposal for the regulatory mechanism of Wolff’s law. J. Orthop. Res. 13(4), 503–512 (1995)

    Article  Google Scholar 

  46. Piccardo G., D’Annibale F., Zulli D.: On the contribution of Angelo Luongo to mechanics: in honor of his 60th birthday. IMA J. Appl. Math. 27(4), 507–529 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Pignataro, M., Ruta, G., Rizzi, N., Varano, V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 803–810. American Society of Mechanical Engineers (2009)

  48. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Placidi L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28, 119–137 (2016)

    Article  MathSciNet  Google Scholar 

  50. Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 Cisterna di Latina 17–21 March 2014 Generalized continua and their applications to the design of composites and metamaterials: a review of presentations and discussions. Math. Mech. Solids (2015). doi:10.1177/1081286515576948

  51. Placidi L., Greve R., Seddik H., Faria S.H.: Continuum-mechanical, anisotropic flow model, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22(3), 221–237 (2010)

    Article  MATH  Google Scholar 

  52. Placidi L., Hutter K.: An anisotropic flow law for incompressible polycrystalline materials. Zeitschrift für angewandte Mathematik und Physik ZAMP 57(1), 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rizzi, N., Varano, V.: On the postbuckling analysis of thin-walled frames. In: Proceedings of the 13th International Conference on Civil, Structural and Environmental Engineering Computing, p. 14, Chania, Crete; Greece (2011)

  54. Rizzi N.L., Varano V.: The effects of warping on the postbuckling behaviour of thin-walled structures. Thin-Walled Struct. 49(9), 1091–1097 (2011)

    Article  Google Scholar 

  55. Rizzi N.L., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  56. Ruta G.C., Varano V., Pignataro M., Rizzi N.L.: A beam model for the flexural–torsional buckling of thin-walled members with some applications. Thin-Walled Struct. 46(7), 816–822 (2008)

    Article  Google Scholar 

  57. Scerrato D., Giorgio I., Della Corte A., Madeo A., Dowling N., Darve F.: Towards the design of an enriched concrete with enhanced dissipation performances. Cement Concrete Res. 84, 48–61 (2016)

    Article  Google Scholar 

  58. Scerrato D., Giorgio I., Madeo A., Limam A., Darve F.: A simple non-linear model for internal friction in modified concrete. Int. J. Eng. Sci. 80, 136–152 (2014)

    Article  MathSciNet  Google Scholar 

  59. Scerrato D., Giorgio I., Rizzi N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. angew. Math. Phys. 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Scerrato, D., Zhurba Eremeeva, I., Lekszycki, T., Rizzi, N.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. (2016). doi:10.1002/zamm.201600066

  61. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319, no. 1, p. 012018. IOP Publishing, (2011). doi:10.1088/1742-6596/319/1/012018

  62. Tomic A., Grillo A., Federico S.: Poroelastic materials reinforced by statistically oriented fibres-numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79(5), 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. (2016). doi:10.1007/s00033-016-0681-8

  64. Turco E., Golaszewski M., Cazzani A., Rizzi N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  65. Vilanova G., Colominas I., Gomez H.: Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int. J. Numer. Methods Biomed. Eng. 29(10), 1015–1037 (2013)

    Article  MathSciNet  Google Scholar 

  66. Zahm A.M., Bucaro M.A., Ayyaswamy P.S.: Numerical modeling of oxygen distributions in cortical and cancellous bone: oxygen availability governs osteonal and trabecular dimensions. Am. J. Physiol. Cell Physiol. 299(5), C922–C929 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Lekszycki, T. A novel coupled system of non-local integro-differential equations modelling Young’s modulus evolution, nutrients’ supply and consumption during bone fracture healing. Z. Angew. Math. Phys. 67, 111 (2016). https://doi.org/10.1007/s00033-016-0708-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0708-1

Mathematics Subject Classification

Navigation