Skip to main content
Log in

An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green’s function

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

As a solid material between the crystal and the amorphous, the study on quasicrystals has become an important branch of condensed matter physics. Due to the special arrangement of atoms, quasicrystals own some desirable properties, such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrystals are expected to be applied to the coating surfaces for engines, solar cells, nuclear fuel containers and heat converters. However, when the quasicrystals are used as coating material, it is very hard to simulate the coupling fields by the finite elements numerical methods because of its thin thickness and extreme stress gradient. This is the main reason why the structure of quasicrystal coating cannot be calculated accurately and stably by various numerical platform. A general solution method which can be used to solve this contact problem for a 1D hexagonal quasicrystal coating perfectly bonded to a transversely isotropic semi-infinite substrate under the point force is presented in this paper. The solutions of the Green’s function under the distributed load can be obtained through the superposition principle. The simulation results show that this method is correct and effective, which has high calculation accuracy and fast convergence speed. The phonon–phason coupling field and elastic field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution, and the complicated coupling field of quasicrystals in coating contact space is explicitly presented in terms of elementary functions. In addition, the relationship between the coating thickness or external force and the stress component is also obtained to solve practical problems in engineering applications. The solutions presented not only bear theoretical merits, but also can serve as benchmarks to clarify various approximate methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Metallic Phason with Long-Range Orientational Order and No Translational Symmetry, vol. 53. Wiley, New York (2013)

    Google Scholar 

  2. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Application. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Bak, P.: Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn–Al alloys. Phys. Rev. Lett. 54(14), 1517 (1985)

    Article  Google Scholar 

  4. Bak, P.: Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. Phys. Rev. B 32(9), 5764–5772 (1985)

    Article  MathSciNet  Google Scholar 

  5. Letoublon, A., De Boissieu, M., Boudard, M., Mancini, L., Gastaldi, J., Hennion, B., Caudron, R., Bellissent, R.: Phason elastic constants of the icosahedral AI–Pd–Mn phason derived from diffuse scattering measurements. Philos. Mag. Lett. 81(4), 273–283 (2001)

    Article  Google Scholar 

  6. Francoual, S., Kaneko, Y., Boissieu, M.D.: Diffuse scattering and phason fluctuations in the Zn–Mg–Sc icosahedral quasicrystal and its Zn–Sc periodic approximant. Phys. Rev. Lett. 95(10), 105503/1-4 (2005)

    Google Scholar 

  7. Edagawa, K., So, G.Y.: Experimental evaluation of phonon–phason coupling in icosahedral quasicrystals. Philos. Mag. A 87(1), 77–95 (2007)

    Article  Google Scholar 

  8. Chernikov, M.A., Ott, H.R.: Elastic moduli of a single quasicrystal of decagonal AI–Ni–Co: evidence for transverse elastic isotropy. Phys. Rev. Lett. 80(2), 321–324 (1998)

    Article  Google Scholar 

  9. Jeong, H.C., Steinhardt, P.J.: Finite-temperature elasticity phason transition in decagonal quasicrystals. Phys. Rev. B Condens. Matter 48(13), 9394–9403 (1993)

    Article  Google Scholar 

  10. Socolar, J.E.S.: Simple octagonal and dodecagonal quasicrystals. Phys. Rev. B 39(15), 10519 (1989)

    Article  MathSciNet  Google Scholar 

  11. Wang, X., Pan, E.: Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals. Pramana 70(5), 911–933 (2008)

    Article  Google Scholar 

  12. Guo, J., Yu, J., Xing, Y., Pan, E., Li, L.: Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole. Acta Mech. 227(9), 2595–2607 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Destainville, N., Mosseri, R., Bailly, F.: Configurational entropy of codimension-one tilings and directed membranes. J. Stat. Phys. 87(3), 697–754 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Torian, S.M., Mermin, N.D.: Mean-field theory of quasicrystalline order. Phys. Rev. Lett. 54(14), 1524 (1985)

    Article  Google Scholar 

  15. Gao, Y., Zhao, Y.T., Zhao, B.S.: Boundary value problems of holomorphic vector functions in 1D quasicrystals. Phys. B Condens. Matter 394, 56–61 (2007)

    Article  Google Scholar 

  16. Liu, G.T., Fan, T.Y., Guo, R.P.: Displacement function and simplifying of plane elasticity problems of two-dimensional quasicrystals with noncrystal rotational symmetry. Mech. Res. Commun. 30(4), 335–344 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, G.T., Fan, T.Y., Guo, R.P.: Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals. Int. J. Solids Struct. 41(14), 3949–3959 (2004)

    Article  MATH  Google Scholar 

  18. Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Phys. Condens. Matter 21(1), 39–44 (2001)

    Google Scholar 

  19. Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31(6), 633–641 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, X.: The general solution of one-dimensional hexagonal quasicrystal. Mech. Res. Commun. 33(14), 576–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, Y., Zhao, B.S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys. Status Solidi (B) 243(15), 4007–4019 (2006)

    Article  Google Scholar 

  22. Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Model. 33(8), 3382–3391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376(26–27), 2004–2009 (2012)

    Article  MATH  Google Scholar 

  24. Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoselasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37(3), 363–379 (2014)

    Article  Google Scholar 

  25. De, P., Pelcovits, R.A.: Linear elasticity theory of pentagonal quasicrystals. Phys. Rev. B Condens. Matter 35(16), 8609 (1987)

    Article  Google Scholar 

  26. Bachteler, J., Trebin, H.R.: Elastic Green’s function of icosahedral quasicrystals. Eur. Phys. J. 4(3), 299–306 (1998)

    Article  Google Scholar 

  27. Gao, Y., Xu, S.P., Zhao, B.S.: A theory of general solutions of 3D problems in 1D hexagonal quasicrystals. Phys. Scr. 77(1), 015601 (2008)

    Article  MATH  Google Scholar 

  28. Li, P.D., Li, X.Y., Zheng, R.F.: Thermo-elastic Green’s functions for an infinite bi-material of one-dimensional hexagonal quasicrystals. Phys. Lett. A 377(8), 637–642 (2013)

    Article  MathSciNet  Google Scholar 

  29. Li, X.Y., Deng, H.: On 2D Green’s functions for 1 D hexagonal quasicrystals. Phys. B Condens. Matter 430, 45–51 (2013)

    Article  Google Scholar 

  30. Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezo-electric effect. Phys. Lett. A 378(10), 761–856 (2014)

    Article  Google Scholar 

  31. Li, X.Y., Wang, T., Zheng, R.F., Kang, G.Z.: Fundamental thereto-electro-elastic solutions for 1D hexagonal QC. J. Appl. Math. Mech. 95(5), 457–468 (2015)

    MATH  Google Scholar 

  32. Gao, Y., Ricoeur, A.: Three-dimensional Green’s functions for two-dimensional quasi-crystal bi materials. Proc. Math. Phys. Eng. Sci. 467(2133), 2622–2642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, T., Li, X.Y., Zhang, X., Muller, R.: Fundamental solutions in a half space of two-dimensional hexagonal QC and their applications. J. Appl. Phys. 117, 154904 (2015)

    Article  Google Scholar 

  34. Markus, L., Eleni, A.: Fundamentals in generalized elasticity and dislocation theory of quasicrystals: Green tensor, dislocation key-formulas and dislocation loops. Philos. Mag. 94(35), 4080–4101 (2014)

    Article  Google Scholar 

  35. Chen, J.J., Bull, S.J.: Modelling the limits of coating toughness in brittle coated systems. Thin Solid Films 517, 3704–3711 (2009)

    Article  Google Scholar 

  36. Song, Z., Komvopoulos, K.: Delamination of an elastic film from an elastic-plastic substrate during adhesive contact loading and unloading. Int. J. Solids Struct. 50(16–17), 2549–2560 (2013)

    Article  Google Scholar 

  37. Huang, X.Q., Pelegri, A.A.: Finite element analysis on nanoindentation with friction contact at the film/substrate interface. Compos. Sci. Technol. 67(7–8), 1311–1319 (2007)

    Article  Google Scholar 

  38. Kouitat, N.R., Von, S.J.: Boundary element numerical modelling as a surface engineering tool: application to very thin coatings. Surf. Coat. Technol. 116–119, 573–9 (1999)

    Article  Google Scholar 

  39. Kouitat, N.R., Niane, N.T., Stebut, J.V.: Three-dimensional vertical cracks ln coated specimens under sliding contact load with a spherical indenter: a numerical study using boundary element modeling. Surf. Coat. Technol. 200, 894–7 (2005)

    Article  Google Scholar 

  40. Mal, A.K.: Guided waves in layered solids with interface zones. Int. J. Eng. Sci. 26, 873–881 (1988)

    Article  MATH  Google Scholar 

  41. Mal, A.K.: Wave propagation in layered composite laminates under periodic surface loads. Wave Motion 10, 257–266 (1988)

    Article  MATH  Google Scholar 

  42. Thomson, W.T.: Transmission of elastic waves through a stratified medium. J. Appl. Phys. 21, 89–93 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  43. Haskell, A.: The dispersion of surface waves on a multilayered media. Bull. Seismol. Soc. Am. 43, 17–34 (1953)

    Google Scholar 

  44. Gilbert, F., Backus, G.: Propagator matrices in elastic wave and vibration problems. Geophys 31, 326–332 (1966)

    Article  Google Scholar 

  45. Banerjee, P.K., Butterfield, R.: Boundary Element Methods in Engineering Science, pp. 35–71. Springer, Berlin (1981)

    MATH  Google Scholar 

  46. Elliott, H.A.: Three-dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Cambr. Philos. Soc. 44, 522–533 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  47. Willis, J.R.: The elastic interaction energy of dislocation loops ln anisotropic media. Q. J. Mech. Appl. Math. 18, 419–433 (1965)

    Article  Google Scholar 

  48. Sveklo, V.A.: Concentrated force in a transversely isotropic half-space and in a composite space. J. Appl. Math. Mech. 33, 532–537 (1969)

    Article  Google Scholar 

  49. Pan, Y.C., Chou, T.W.: Point force solution for an infinite transversely isotropic solid. J. Appl. Mech. ASME 43(4), 514–515 (1976)

    Article  MATH  Google Scholar 

  50. Pan, E., Yuan, F.G.: Three-dimensional Green’s functions in anisotropic biomaterials. Int. J. Solids Struct. 37, 5329–5351 (2000)

    Article  MATH  Google Scholar 

  51. Pan, E.: Three-dimensional Green’s functions in anisotropic elastic biomaterials with imperfect interfaces. J. Appl. Mech. ASME 70, 180–190 (2003)

    Article  MATH  Google Scholar 

  52. Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials[J]. Int. J. Solids Struct. 37(23), 3201–3229

  53. Wang, R.H., Yang, W.G., Hu, C.Z., Ding, D.H.: Point and space groups and elastic behaviour of one-dimensional quasicrystals. J. Phys. Condens. Matter 9(11), 2411–2422 (1997)

    Article  Google Scholar 

  54. Ding, H.J., Cheng, W.Q., Zhang, L.C.: Elasticity of Transversely Isotropic Materials. Springer, Berlin (2006)

    MATH  Google Scholar 

  55. Sterzel, R., Hinkel, C., Haas, A., Langsdorf, A., Bruls, G., Assmus, W.: Ultrasonic measurements on fci Zn–Mg–Y single crystals. Europhys. Lett. 49(6), 742–747 (2007)

    Article  Google Scholar 

  56. Edagawa, K.: Phonon–phason coupling in a Mg–Ga–AI–Zn icosahedral. Philos. Lett. 85(9), 455–462 (2005)

    Article  Google Scholar 

  57. Zhu, W.J., Henley, C.L.: Phonon-phason coupling in icosahedral quasicrystals. Europhys. Lett. 46(6), 748–754 (1999)

    Article  Google Scholar 

  58. Wu, Y.F.: Indentation Analysis of Piezoelectric Materials and Quasicrystals. Zhejiang University, Hangzhou (2012)

    Google Scholar 

  59. GB 50017-2003 Code for design of steel structures

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 11572119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Jie Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, PF., Chen, BJ. & Zhang, Y. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green’s function. Z. Angew. Math. Phys. 68, 95 (2017). https://doi.org/10.1007/s00033-017-0842-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0842-4

Mathematics Subject Classification

Keywords

Navigation