Skip to main content
Log in

Two-dimensional strain gradient damage modeling: a variational approach

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush–Kuhn–Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.: On the linear theory of micropolar plates. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. AminPour, H., Rizzi, N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amor, H., Marigo, J.-J., Maurini, C.: Reguralized formulation of the variational brittle fracture with unilateral contact: numerical experiment. J. Mech. Phys. Solids 57, 1209–1229 (2009)

    Article  MATH  Google Scholar 

  6. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 13, 7 (2013)

    MATH  Google Scholar 

  7. Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 66(1), 209–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aslan, O., Forest, S.: The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: Multiscale Methods in Computational Mechanics, pp. 135–153. Springer (2011)

  9. Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int. J. Numer. Methods Biomed. Eng. 26(9), 1155–1175 (2010)

    Article  MATH  Google Scholar 

  12. Bourdin, B., Francfort, G.A., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carcaterra, A., Akay, A., Bernardini, C.: Trapping of vibration energy into a set of resonators: theory and application to aerospace structures. Mech. Syst. Signal Process. 26, 1–14 (2012)

    Article  Google Scholar 

  14. Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218(3), 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin. Mech. Thermodyn. 28(1–2), 139–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 96(10), 1220–1244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cecchi, A., Rizzi, N.: Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int. J. Solids Struct. 38(1), 29–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, J., Ouyang, L., Rulis, P., Misra, A., Ching, W.Y.: Complex nonlinear deformation of nanometer intergranular glassy films in \(\beta \)-\(Si_{3}{N}_{4}\). Phys. Rev. Lett. 95(256103), 25 (2005)

    Google Scholar 

  19. Contrafatto, L., Cuomo, M., Fazio, F.: An enriched finite element for crack opening and rebar slip in reinforced concrete members. Int. J. Fract. 178(1–2), 33–50 (2012)

    Article  Google Scholar 

  20. Contrafatto, L., Cuomo, M., Gazzo, S.: A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates. Comput. Struct. 173, 1–18 (2016)

    Article  Google Scholar 

  21. Contrafatto, L., Cuomo, M., Greco, L.: Meso-scale simulation of concrete multiaxial behaviour. Eur. J. Environ. Civ. Eng. 21(7–8), 896–911 (2017)

    Article  Google Scholar 

  22. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    Article  MathSciNet  Google Scholar 

  23. de Felice, G., Rizzi, N.: Macroscopic modelling of cosserat media. Trends Appl. Math. Mech. Monogr. Surv. Pure Appl. Math. 106, 58–65 (1999)

    MathSciNet  MATH  Google Scholar 

  24. dell’Isola, F., d’Agostino, M., Madeo, A., Boisse, P., Steigmann, D.: Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: the case of standard bias extension test. J. Elast. 122(2), 131–155 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of piola, mindlin, sedov and toupin and some future research perspectives. Math. Mech. Solids 22(4), 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  26. dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  27. dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2D lattices: a numerical analysis on static response and wave propagation. Proc. Est. Acad. Sci. 64, 219–225 (2015)

    Article  Google Scholar 

  28. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proc. R. Soc. A, vol. 472, p. 20150790. The Royal Society (2016)

  29. dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. In: Variational Models and Methods in Solid and Fluid Mechanics, pp. 1–15. Springer (2011)

  30. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proc. R. Soc. A, vol. 471, p. 20150415. The Royal Society (2015)

  31. dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Di Carlo, A., Rizzi, N., Tatone, A.: Continuum modelling of a beam-like latticed truss: identification of the constitutive functions for the contact and inertial actions. Meccanica 25(3), 168–174 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Duda, F.P., Ciarbonetti, A., Sánchez, P.J., Huespe, A.E.: A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int. J. Plast. 65, 269–296 (2015)

    Article  Google Scholar 

  34. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65(3), 587–612 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  36. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Math. Mech. Solids 22(5), 969–987 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  39. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13, 53–83 (2014)

    Article  Google Scholar 

  40. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MATH  Google Scholar 

  42. Grillo, A., Wittum, G., Tomic, A., Federico, S.: Remodelling in statistically oriented fibre-reinforced composites and biological tissues. Math. Mech. Solids 20, 1107–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. A Appl. Sci. Manuf. 81, 145–157 (2016)

    Article  Google Scholar 

  44. Harrison, P., Clifford, M.J., Long, A.C.: Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos. Sci. Technol. 64(10), 1453–1465 (2004)

    Article  Google Scholar 

  45. Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer, Berlin (2005)

    Google Scholar 

  46. Lorentz, E., Andrieux, S.: Analysis of non-local models through energetic formulations. Int. J. Solids Struct. 40(12), 2905–2936 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  48. Misra, A., Ouyang, L., Chen, J., Ching, W.Y.: Ab initio calculations of strain fields and failure patterns in silicon nitride intergranular glassy films. Philos. Mag. 87(25), 3839–3852 (2007)

    Article  Google Scholar 

  49. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). https://doi.org/10.1177/1081286515576821

  50. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Misra, A., Poorsolhjouy, P.: Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech. 227(5), 1393–1413 (2016)

    Article  MATH  Google Scholar 

  52. Misra, A., Singh, V.: Micromechanical model for viscoelastic materials undergoing damage. Contin. Mech. Thermodyn. 25(2–4), 343–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Misra, A., Singh, V.: Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin. Mech. Thermodyn. 27(4–5), 787–817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peerlings, R.H.J., Geers, M.G.D., De Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44), 7723–7746 (2001)

    Article  MATH  Google Scholar 

  55. Pham, K., Marigo, J.-J.: Approche variationnelle de l’endommagement: I. les concepts fondamentaux. C.R. Mécanique 338, 191–198 (2010)

    Article  MATH  Google Scholar 

  56. Pham, K., Marigo, J.-J.: Approche variationnelle de l’endommagement: II. les modèles à gradient. C.R. Mécanique 338, 199–206 (2010)

    Article  MATH  Google Scholar 

  57. Pham, K., Marigo, J.-J.: From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25(2–4), 147–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pham, K., Marigo, J.-J., Maurini, C.: The issue of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J. Mech. Phys. Solids 59, 1163–1190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19, 900–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4–5), 623–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1–2), 119–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. (2017). https://doi.org/10.1007/s10665-016-9856-8:1-21

    MathSciNet  MATH  Google Scholar 

  65. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain gradient modelling. Proc. R. Soc. Math. Phys. Eng. Sci. 474, 20170878 (2018)

    Article  MathSciNet  Google Scholar 

  66. Placidi, L., El Dhaba, A.: Semi-inverse method à la saint-venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  67. Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5), 114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  68. Placidi, L., Greve, R., Seddik, H., Faria, S.: Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22(3), 221–237 (2010)

    Article  MATH  Google Scholar 

  69. Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Poorsolhjouy, P., Misra, A.: Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int. J. Solids Struct. 108, 139–152 (2017)

    Article  Google Scholar 

  71. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  72. Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 96(11), 1268–1279 (2016)

    Article  MathSciNet  Google Scholar 

  74. Seddik, H., Greve, R., Placidi, L., Hamann, I., Gagliardini, O.: Application of a continuum-mechanical model for the flow of anisotropic polar ice to the EDML core, Antarctica. J. Glaciol. 54(187), 631–642 (2008)

    Article  Google Scholar 

  75. Sicsic, P., Marigo, J.-J.: From gradient damage laws to Griffith’s theory of crack propagation. J. Elast. 113(1), 55–74 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  76. Voyiadjis, G.Z., Mozaffari, N.: Nonlocal damage model using the phase field method: theory and applications. Int. J. Solids Struct. 50(20), 3136–3151 (2013)

    Article  Google Scholar 

  77. Yang, Y., Ching, W.Y., Misra, A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromech. 1(2), 60–71 (2011)

    Article  Google Scholar 

  78. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Government of the Russian Federation (Contract No. 14.Y26.31.0031)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placidi, L., Misra, A. & Barchiesi, E. Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Phys. 69, 56 (2018). https://doi.org/10.1007/s00033-018-0947-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0947-4

Keywords

Mathematics Subject Classification

Navigation