Skip to main content
Log in

High IIP3 and Low-Noise CMOS Mixer Using Non-linear Feedback Technique

  • Cognitive Radio-based Wireless Communication Devices
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A third-order intermodulation cancelation technique using a non-linear feedback is proposed to design a low-power low-distortion mixer in a 65 nm standard CMOS technology. The IM3 cancelation is achieved by estimating distorting error at a non-linear feedback element and subtracting it from the input. The linearization technique is utilized in the input trans-conductance of the mixer. The circuit functionality is analyzed using Volterra series. The covering frequency range of the mixer is 800 MHz to 5 GHz. The technique increases the input-referred third-order intercept point (IIP3) and input 1 dB compression point to +16.4 dBm and −1.87 dBm, respectively. It obtains a gain of 9 dB and an input-referred noise of 1.84 nV\(/\sqrt{}\)Hz while consumes 8.75 mA from 1.2 V supply. The layout of the mixer occupies 0.315 mm × 0.296 mm of silicon area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Aparin, L.E. Larson, Linearization of monolithic LNA’s using low-frequency, low-impedance input termination, in Proc. IEEE Eur. Solid State Circuits Conf. (2003), pp. 137–140

    Google Scholar 

  2. B. Bakkaloglu, et al., A 1.5-V multi-mode quad-band RF receiver for GSM/EDGE/CDMA2K in 90 nm digital CMOS process. IEEE J. Solid-State Circuits 41(5), 1149–1159 (2006)

    Article  Google Scholar 

  3. W.-H. Chen, et al., A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J. Solid-State Circuits 43(5), 1164–1176 (2008)

    Article  Google Scholar 

  4. H. Darabi, A.A. Abidi, Noise in RF-CMOS mixers: a simple physical model. IEEE J. Solid-State Circuits 35(1), 15–25 (2000)

    Article  Google Scholar 

  5. Y. Ding, R. Harjani, An +18 dBm IIP3 LNA in 0.35 μm CMOS, in ISSCC 2001 Dig. Tech. Papers (2001), pp. 162–163

    Google Scholar 

  6. Y. Ding, R. Harjani, High-Linearity CMOS RF Front-End Circuit (Springer, Berlin, 2005)

    Google Scholar 

  7. K.L. Fong, High-frequency analysis of linearity improvement technique of common-emitter trans-conductance stage using a low frequency trap network. IEEE J. Solid-State Circuits 35, 1249–1252 (2000)

    Article  Google Scholar 

  8. B. Gilbert, Design consideration monolithic multiplier using active feedback. IEEE J. Solid-State Circuits SC-9(6), 364–373 (1974)

    Article  Google Scholar 

  9. J. Han, R. Gharpurey, A 3.5 mW 900 MHz down-converter with multiband feedback and device trans-conductance reuse, in CICC (2007), pp. 527–530

    Google Scholar 

  10. K. Iizuka, et al., A 184 mW fully integrated DVB-H tuner with a linearized variable gain LNA and quadrature mixers using cross-coupled trans-conductor. IEEE J. Solid-State Circuits 42(4), 862–871 (2007)

    Article  Google Scholar 

  11. N. Kim, et al., A cellular-band CDMA 0.25 μm CMOS LNA linearized using active post-distortion. IEEE J. Solid-State Circuits 41(7), 1530–1534 (2006)

    Article  Google Scholar 

  12. W. Kim, et al., A mixer with third-order nonlinearity cancellation technique for CDMA applications. IEEE Microw. Wirel. Compon. Lett. 17(1), 76–78 (2007)

    Article  Google Scholar 

  13. B.H. Leung, VLSI for Wireless Communication (Prentice Hall, Englewood Cliffs, 2002)

    Google Scholar 

  14. S.-T. Lim, et al., A low-voltage broadband feed-forward linearized BJT mixer. IEEE J. Solid-State Circuits 41(9), 2177–2187 (2006)

    Article  Google Scholar 

  15. A. Liscidini, C. Ghezzi, E. Depaoli, G. Albasini, R. Castello, Common gate transformer feedback LNA in a high IIP3 current mode RF CMOS front-end, in Custom Integrated Circuits Conference 2006 Proceedings of the IEEE (2006), pp. 300–304

    Google Scholar 

  16. S. Otaka, et al., A +10-dBm IIP3 SiGe mixer with IM3 cancellation technique. IEEE J. Solid-State Circuits 39(12), 2333–2341 (2004)

    Article  Google Scholar 

  17. P. Rossi, et al., A variable gain RF front end based on a voltage-voltage feedback LNA for multi-standard applications. IEEE J. Solid-State Circuits 40(3), 690–697 (2005)

    Article  Google Scholar 

  18. L. Sheng, L.E. Larson, An Si–SiGe BiCMOS direct-conversion mixer with second order and third order nonlinearity cancellation for WCDMA applications. IEEE Trans. Microw. Theory Tech. 51, 2211–2220 (2003)

    Article  Google Scholar 

  19. P. Wambacq, W. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic, Norwell, 1998)

    Google Scholar 

  20. D.R. Webster, et al., Derivative super-position a linearization technique for ultra broadband systems, in Proc. IEE Collq., Wideband Circuits, Modeling and Techniques (1996), pp. 3/1–3/14

    Google Scholar 

  21. Y.-S. Youn, et al., A 2 GHz 16 dBm IIP3 low-noise amplifier in 0.25 μm CMOS technology, in ISSCC (2003 Dig. Tech. Papers) (2003), pp. 452–453

    Google Scholar 

  22. H. Zhang, et al., A low-power, linearized, ultra-wideband LNA design technique. IEEE J. Solid-State Circuits 44(2), 320–330 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amirabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirabadi, A., Chehelcheraghi, M. & Kamarei, M. High IIP3 and Low-Noise CMOS Mixer Using Non-linear Feedback Technique. Circuits Syst Signal Process 30, 721–739 (2011). https://doi.org/10.1007/s00034-011-9301-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9301-1

Keywords

Navigation