Skip to main content
Log in

Optimization of Fractional-Order RLC Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces some generalized fundamentals for fractional-order RL β C α circuits as well as a gradient-based optimization technique in the frequency domain. One of the main advantages of the fractional-order design is that it increases the flexibility and degrees of freedom by means of the fractional parameters, which provide new fundamentals and can be used for better interpretation or best fit matching with experimental results. An analysis of the real and imaginary components, the magnitude and phase responses, and the sensitivity must be performed to obtain an optimal design. Also new fundamentals, which do not exist in conventional RLC circuits, are introduced. Using the gradient-based optimization technique with the extra degrees of freedom, several inverse problems in filter design are introduced. The concepts introduced in this paper have been verified by analytical, numerical, and PSpice simulations with different examples, showing a perfect matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Biswas, S. Sen, P. Dutta, Modelling of a capacitive probe in a polarizable medium. Sens. Actuators Phys. 120(1), 115–122 (2005)

    Article  Google Scholar 

  2. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)^{1/n} by a regular Newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)

    Article  Google Scholar 

  3. K. Diethelm, N.J. Ford, A.D. Freed, Y.Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6), 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.C. Doehring, A.H. Freed, E.O. Carew, I. Vesely, Fractional order viscoelasticity of the aortic valve: an alternative to QLV. J. Biomech. Eng. 127(4), 700–708 (2005)

    Article  Google Scholar 

  5. A.S. Elwakil, B. Maundy, Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electron. Lett. 46(20), 1367–1368 (2010)

    Article  Google Scholar 

  6. M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 384–396 (2007)

    Article  Google Scholar 

  7. N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.E. Fouda, A.G. Radwan, On the fractional-order memristor model. J. Fract. Calc. Appl. 4(1), 1–7 (2013)

    Google Scholar 

  9. T.C. Haba, G.L. Loum, J.T. Zoueu, G. Albart, Use of a component with fractional impedance in the realization of an analogical regulator of order ½. J. Appl. Sci. 8(1), 59–67 (2008)

    Article  Google Scholar 

  10. T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33(2), 364–373 (2007)

    Article  Google Scholar 

  11. T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos Solitons Fractals 24(2), 479–490 (2005)

    Article  Google Scholar 

  12. I.S. Jesus, J.A. Machado, J.B. Cunha, M.F. Silva, Fractional order electrical impedance of fruits and vegetables, in Proceedings of the 25th IASTED International Conference on Modeling Identification and Control (2006), pp. 489–494

    Google Scholar 

  13. I.S. Jesus, J.A. Machado, Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1), 45–55 (2009)

    Article  MATH  Google Scholar 

  14. B.T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MATH  Google Scholar 

  15. B.T. Krishna, K.V.V.S. Reddy, Active and Passive Realization of Fractance Device of Order 1/2. Act. Passive Electron. Compon. 2008 (2008)

  16. H. Li, M. Wu, X. Wang, Fractional-moment capital asset pricing model. Chaos Solitons Fractals 42(1), 412–421 (2009)

    Article  MATH  Google Scholar 

  17. R.L. Magin, Fractional calculus in bioengineering. Begell House, Connecticut (2006)

  18. R.L. Magin, Fractional calculus in bioengineering, part 3. Crit. Rev. Biomed. Eng. 32(3–4), 195–377 (2004)

    Article  Google Scholar 

  19. R.L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)

    Article  MATH  Google Scholar 

  20. R. Martin, J.J. Quintara, A. Ramos, L. Nuez, Modeling electrochemical double layer capacitor, from classical to fractional impedance, in Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference (2008), pp. 61–66

    Google Scholar 

  21. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  22. K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64(10), 3329–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E75-A(12), 1814–1819 (1992)

    Google Scholar 

  24. K.B. Oldham, J. Spanier, Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  25. I. Petras, D. Sierociuk, I. Podlubny, Identification of parameters of a half-order system. IEEE Trans. Signal Process. 60(10), 5561–5566 (2012)

    Article  MathSciNet  Google Scholar 

  26. I. Petras, Y. Chen, Fractional-order circuit elements with memory, in Proceedings of the 13th International Carpathian Control Conference (2012), pp. 552–558

    Chapter  Google Scholar 

  27. I. Petras, Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation (Springer, Berlin, 2011)

    Book  Google Scholar 

  28. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits. Syst., I 55(7), 2051–2063 (2008)

    Article  MathSciNet  Google Scholar 

  29. A.G. Radwan, A.M. Soliman, A.S. Elwakil, Fractional-order sinusoidal oscillators: four practical circuit design examples. Int. J. Circuit Theory Appl. 36(4), 473–492 (2008)

    Article  MATH  Google Scholar 

  30. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(1), 55–66 (2008)

    Article  Google Scholar 

  31. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)

    Article  Google Scholar 

  32. A.G. Radwan, K.N. Salama, Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)

    Article  MathSciNet  Google Scholar 

  33. A.G. Radwan, K.N. Salama, Passive and active elements using fractional L β C α circuit. IEEE Trans. Circuits Syst. I 58(10), 2388–2397 (2011)

    Article  MathSciNet  Google Scholar 

  34. A.G. Radwan, Stability analysis of the fractional-order RL β C α circuit. J. Fract. Calc. Appl. 3(1), 1–15 (2012)

    Google Scholar 

  35. A.G. Radwan, M.H. Bakr, N.K. Nikolova, Transient adjoint sensitivities for discontinuities with Gaussian material distributions. Prog. Electromagn. Res. B 27, 1–19 (2011)

    Article  Google Scholar 

  36. S. Roy, On the realization of a constant-argument immitance or fractional operator. IEEE Trans. Circuit Theory 14(3), 264–274 (1967)

    Article  Google Scholar 

  37. J. Sabatier, O.P. Agrawal, M.J.A. Tenreiro, Advances in Fractional Calculus; Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  38. K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76(2), 205–209 (1993)

    Google Scholar 

  39. I. Schäfer, K. Krüger, Modelling of lossy coils using fractional derivatives. J. Phys. D, Appl. Phys. 41(4), 045001 (2008)

    Article  Google Scholar 

  40. A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order filter with two fractional elements of dependent orders. J. Microelectron. 7(9), 965–969 (2012)

    Google Scholar 

  41. M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82(8), 1627–1634 (1999)

    Google Scholar 

  42. J. Valsa, Fractional-order electrical components, networks and systems, in Proceedings of the 22nd International Conference Radioelektronika (2012), pp. 1–9

    Google Scholar 

  43. S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed G. Radwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radwan, A.G., Fouda, M.E. Optimization of Fractional-Order RLC Filters. Circuits Syst Signal Process 32, 2097–2118 (2013). https://doi.org/10.1007/s00034-013-9580-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9580-9

Keywords

Navigation