Skip to main content
Log in

Generalized Filter Topology Using Grounded Components and Single Novel Active Element

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new active element combining the useful features of differential voltage, dual-X and first generation current conveyors. The new proposed active element is further utilized to introduce a new generalized filter topology employing grounded components only. The proposed single active element-based topology benefits from first-order and second-order filter realization by appropriate impedance specialization. The circuit topology with single current input provides two output currents and voltages in each case. A thorough study of proposed active element along with extensive simulations is carried out to validate the filter topology. A detailed non-ideal study is also given. To further support the usefulness of filter topology, higher-order filters are also realized. The new active element and the new filter structure provide advancement to the existing knowledge; with the scope of active element being further exploited for analog signal processing applications in general. The proposed differential voltage dual-X first generation current conveyor (DV-DXCCI) and its filtering applications are simulated using TSMC 0.25 \(\upmu \)m technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.K. Abdalla, D.R. Bhaskar, R. Senani, Configuration for realising a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circuits Devices Syst. 6, 159–167 (2012)

    Article  Google Scholar 

  2. M.T. Abuelma’atti, in New current-mode active filters employing first generation current conveyor. Proceedings of the 35th Midwest Symposium on Circuits and Systems, 1992, pp. 310–313

  3. B. Al-Hashimi, Current mode filter structure based on dual output transconductance amplifiers. Electron. Lett. 32, 25–26 (1996)

    Article  Google Scholar 

  4. P. Beg, M. Siddiqi, M.S. Ansari, Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int. J. Electron. 98, 1185–1198 (2011)

    Article  Google Scholar 

  5. P. Beg, S. Maheshwari, M.A. Siddiqi, Digitally controlled fully differential voltage- and transadmittance-mode biquadratic filter. IET Circuits Devices Syst. 7, 193–203 (2013)

    Article  Google Scholar 

  6. D. Biolek, V. Biolkova, Z. Kolka, Single-CDTA (current differencing transconductance amplifier) current-mode biquad revisited. WSEAS Trans. Electron. 5, 250–256 (2008)

    Google Scholar 

  7. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)

  8. B. Chaturvedi, S. Maheshwari, Current mode biquad filter with minimum component count. Act. Passiv. Electron. Compon. 2011, 7 pp. (2011)

  9. W. Chiu, S.-I. Liu, H.-W. Tsao, J.-J. Chen, CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Devices Syst. 143, 91–96 (1996)

    Article  MATH  Google Scholar 

  10. H. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc. Circuits Devices Syst. 144, 195–200 (1997)

    Article  Google Scholar 

  11. A. Fabre, O. Saaid, H. Barthelemy, On the frequency limitations of the circuits based on second generation current conveyors. Analog Integr. Circuits Signal Process. 7(2), 113–129 (1995)

    Article  Google Scholar 

  12. J.-W. Horng, Voltage/current-mode universal biquadratic filter using single CCII+. Indian J. Pure Appl. Phys. 48, 749–756 (2010)

    Google Scholar 

  13. M. Koksal, Realization of a general all-pole current transfer function by using CBTA. Int. J. Circuit Theory Appl. 41, 319–329 (2013)

    Article  Google Scholar 

  14. S. Maheshwari, High output impedance current-mode all-pass sections with two grounded passive components. IET Circuits Devices Syst. 2, 234–242 (2008)

    Article  Google Scholar 

  15. S. Maheshwari, A canonical voltage-controlled VM-APS with a grounded capacitor. Circuits Syst. Signal Process. 27(1), 123–132 (2008)

    Article  Google Scholar 

  16. S. Maheshwari, Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Syst. 3, 153–160 (2009)

    Article  MathSciNet  Google Scholar 

  17. S. Maheshwari, Voltage mode four phase sinusoidal generator and its useful extensions. Act. Passiv. Electron. Compon. 2013, 8 pp. (2013)

  18. S. Maheshwari, M.S. Ansari, Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering 21, 281–289 (2012)

    Google Scholar 

  19. S. Maheshwari, B. Chaturvedi, High-input low-output impedance all-pass filters using one active element. IET Circuits Devices Syst. 6, 103–110 (2012)

    Article  Google Scholar 

  20. S. Maheshwari, J. Mohan, D.S. Chauhan, Novel cascadable all-pass/notch filters using a single FDCCII and grounded capacitors. Circuits Syst. Signal Process. 30, 643–654 (2011)

    Article  MATH  Google Scholar 

  21. S. Minaei, E. Yuce, A new full-wave rectifier circuit employing single dual-X current conveyor. Int. J. Electron. 95, 777–784 (2008)

    Article  Google Scholar 

  22. S. Ozcan, H. Kuntman, O. Çiçekoglu, in A novel multi-input single-output filter with reduced number of passive elements using single current conveyor. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, pp. 1030–1032

  23. N. Pandey, S.K. Paul, VM and CM universal filters based on single DVCCTA. Act, Passiv. Electron. Compon. 2011, 7 pp. (2011)

  24. M. Sagbas, U. Ayten, H. Sedef, Current and voltage transfer function filters using a single active device. IET Circuits Devices Syst. 4, 78–86 (2010)

    Article  Google Scholar 

  25. A. Sedra, K.C. Smith, A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17, 132–134 (1970)

    Article  Google Scholar 

  26. R. Senani, K.K. Abdalla, D.R. Bhaskar, A state variable method for the realization of universal current-mode biquads. Circuits Syst. 2, 286–292 (2011)

    Article  Google Scholar 

  27. S.V. Singh, S. Maheshwari, D.S. Chauhan, Single MO-CCCCTA-based electronically tunable current/trans-impedance-mode biquad universal filter. Circuits Syst. 2, 1–6 (2011)

    Article  Google Scholar 

  28. K.C. Smith, A. Sedra, The current conveyor—a new circuit building block. Proc. IEEE. 56, 1368–1369 (1968)

    Article  Google Scholar 

  29. A.M. Soliman, Current mode filters using two output inverting CCII. Int. J. Circuit Theory Appl. 36, 875–881 (2008)

    Article  Google Scholar 

  30. A.M. Soliman, The CCII+ and the ICCII as basic building blocks in low-pass filter realizations. Int. J. Circuit Theory Appl. 36, 493–509 (2008)

    Article  MATH  Google Scholar 

  31. A.M. Soliman, Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC. Int. J. Circuit Theory Appl. 37, 835–855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.M. Soliman, Pathological representation of the two-output CCII and ICCII family and application. Int. J. Circuit Theory Appl. 39, 589–606 (2011)

    Article  Google Scholar 

  33. M.N.S. Swamy, Mutators, generalized impedance converters and inverters, and their realization using generalized current conveyors. Circuits Syst. Signal Process. 30, 209–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Tangsrirat, Novel current-mode and voltage-mode universal biquad filters using single CFTA. Indian J. Eng. Mater. Sci. 17, 99–104 (2010)

    Google Scholar 

  35. E. Yuce, S. Minaei, Realization of arbitrary current transfer functions based on commercially available CCII+s. Int. J. Circuit Theory Appl. (2012). doi:10.1002/cta.1880

Download references

Acknowledgments

Thanks are due to anonymous reviewers for useful comments and editors for recommending the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Beg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beg, P., Maheshwari, S. Generalized Filter Topology Using Grounded Components and Single Novel Active Element. Circuits Syst Signal Process 33, 3603–3619 (2014). https://doi.org/10.1007/s00034-014-9807-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9807-4

Keywords

Navigation