Skip to main content
Log in

Sparseness-Controlled Proportionate Affine Projection Sign Algorithms for Acoustic Echo Cancellation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In order to reduce the steady-state misalignment of real-coefficient proportionate affine projection sign algorithm (RP-APSA) for sparse impulse responses, a memory RP-APSA is proposed in this paper by exploiting the historical values of proportionate factors, called MP-APSA. Further, to improve the robustness of MP-APSA and the recently proposed memory-improved RP-APSA (MIP-APSA) for impulse responses with mutative sparseness, two sparseness-controlled algorithms (SC-MP-APSA and SC-MIP-APSA) are developed by estimating the sparseness of the impulse response at each iteration. Simulation results in the context of acoustic echo cancellation show that the proposed algorithms retain good robustness against impulsive interferences. More importantly, the proposed sparseness-controlled algorithms can not only obtain low steady-state misalignment in both the sparse and dispersive situations, but also adapt to the variations in the sparseness of the impulse response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Albu, H.K. Kwan, Memory improved proportionate affine projection sign algorithm. Electron. Lett. 48(20), 1279–1281 (2012). doi:10.1049/el.2012.2403

    Article  Google Scholar 

  2. J. Benesty, Y. Huang, Adaptive Signal Processing-Applications to Real-World Problems (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  3. J. Benesty, S. L. Gay, An improved PNLMS algorithm, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), USA, II-1881-II-1884 (2002)

  4. J. Benesty, Y.A. Huang, J. Chen, P.A. Naylor, Adaptive algorithms for the identification of sparse impulse responses, in Selected Methods for Acoustic Echo and Noise Control, ed. by E. Hänsler, G. Schmidt (Springer, New York, 2006), pp. 125–153. ch. 5

    Google Scholar 

  5. B.K. Das, M. Chakraborty, Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms. IEEE Trans. Circuits Syst. I Reg. Pap. 61(5), 1499–1507 (2014). doi:10.1109/TCSI.2013.2289407

    Article  MathSciNet  Google Scholar 

  6. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. Audio Speech Lang. Process 8(5), 508–518 (2000). doi:10.1109/89.861368

    Article  Google Scholar 

  7. G. W. Elko, E. Diethorn, T. Gänsler, Room impulse response variation due to thermal fluctuation and its impact on acoustic echo cancellation, in Proceedings of International Workshop Acoustic Echo Noise Control (2003), pp. 67–70

  8. T. Gansler, J. Benesty, S. L. Gay, M. Sondhi, A robust proportionate affine projection algorithm for network echo cancellation, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Istanbul, 2000), pp. 793–796

  9. O. Hoshuyama, R. A. Goubran, A. Sugiyama, A generalized proportionate variable step-size algorithm for fast changing acoustic environments, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Montreal, 2004) IV-161-IV-164

  10. W. H. Khong, P. A. Naylor, Efficient use of sparse adaptive filters, in Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers, ACSSC’06 (2006), pp. 1375–1379

  11. P. Loganathan, A.W.H. Khong, P.A. Naylor, A class of sparseness-controlled algorithms for echo cancellation. IEEE Trans. Audio Speech Lang. Process 17(8), 1591–1601 (2009). doi:10.1109/TASL.2009.2025903

    Article  Google Scholar 

  12. L. Liao and A. W. H. Khong, Sparseness-controlled affine projection algorithm for echo cancelation, in Proceedings of APSIPA Annual Summit and Conference 2010 (Biopolis, 2010), pp. 355–361

  13. U. Mahbub, S.A. Fattah, A single-channel acoustic echo cancellation scheme using gradient-based adaptive filtering. Circuits Syst. Signal Process. 33(5), 1541–1572 (2014). doi:10.1007/s00034-013-9715-z

    Article  Google Scholar 

  14. R. Nath, Adaptive echo cancellation based on a multipath model of acoustic channel. Circuits Syst. Signal Process. 32(4), 1673–1698 (2013). doi:10.1007/s00034-012-9529-4

    Article  Google Scholar 

  15. C. Paleologu, S. Ciochina, J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Process. Lett. 17(2), 165–168 (2010). doi:10.1109/LSP.2009.2035665

    Article  Google Scholar 

  16. L. Shi, Y. Lin, X. Xie, Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference. Electron. Lett. 50(6), 466–467 (2014). doi:10.1049/el.2013.3997

    Article  Google Scholar 

  17. F.C.D. Souza, O.J. Tobias, R. Seara, D.R. Morgan, A PNLMS algorithm with individual activation factors. IEEE Trans. Signal Process. 58(4), 2036–2047 (2010). doi:10.1109/TSP.2009.2038420

    Article  MathSciNet  Google Scholar 

  18. T. Shao, Y.R. Zheng, J. Benesty, An affine projection sign algorithm robust against impulsive interferences. IEEE Signal Process. Lett. 17(4), 327–330 (2010). doi:10.1109/LSP.2010.2040203

    Article  Google Scholar 

  19. Z. L. Yang, Y. R. Zheng, S. L. Grant, Proportionate affine projection sign algorithms for sparse system identification in impulsive interference, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Prague, 2011) pp. 4068–4071

  20. Z.L. Yang, Y.R. Zheng, S.L. Grant, Proportionate affine projection sign algorithms for network echo cancellation. IEEE Trans. Audio Speech Lang. Process 19(8), 2273–2284 (2011). doi:10.1109/TASL.2011.2125955

    Article  Google Scholar 

  21. Y. Yu, H. Zhao, An efficient memory-improved proportionate affine projection sign algorithm based on \(l_{0}\)-norm for sparse system identification, in Foundations of Intelligent Systems (Springer, Berlin, 2014), pp. 509–518

  22. H. Zhao, Y. Yu, S. Gao, X. Zeng, Z. He, Memory proportionate APA with individual activation factors for acoustic echo cancellation. IEEE/ACM Trans. Audio Speech Lang. Process 22(6), 1047–1055 (2014). doi:10.1109/TASLP.2014.2318519

    Article  Google Scholar 

  23. H. Zhao, Y. Yu, Improved efficient proportionate affine projection algorithm based on \(l_{0}\)-norm for sparse system identification. J. Eng. 1(1), 1–4 (2014). doi:10.1049/joe.2013.0129

    Article  Google Scholar 

  24. S. Zhang, J. Zhang, Modified variable step-size affine projection sign algorithm. Electron. Lett. 49(20), 1264–1265 (2013). doi:10.1049/el.2013.2337

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. M. N. S. Swamy, the Editor-in-Chief for his help in improving the presentation of the paper. This work was supported in part by National Natural Science Foundation of China (Grants: 61271340, 61134002, 61372152, 61433011, U1234203), the Sichuan Provincial Youth Science and Technology Fund (Grant: 2012JQ0046), the Fundamental Research Funds for the Central Universities (Grant: SWJTU12CX026) and the Postgraduate Innovative Experimental and Practice Project of Southwest Jiaotong University (Grant: YC201403211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhao, H. & Chen, B. Sparseness-Controlled Proportionate Affine Projection Sign Algorithms for Acoustic Echo Cancellation. Circuits Syst Signal Process 34, 3933–3948 (2015). https://doi.org/10.1007/s00034-015-0040-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0040-6

Keywords

Navigation