Skip to main content
Log in

New Criteria for Dissipativity Analysis of Fractional-Order Static Neural Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the dissipativity analysis problem for a class of fractional-order static neural networks (FOSNNs). We first derive a novel sufficient condition for global asymptotic stability of FOSNNs by constructing novel convex Lyapunov functions and using linear matrix inequality techniques. Then, based on the proposed stable criterion combined with some auxiliary properties of fractional calculus, the dissipative problem for the related system is solved for the first time. In addition, we also extend the obtained results to generalized fractional-order neural networks. Four numerical examples are provided to show the validity and effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. J. Cao, D. Zhou, Stability analysis of delayed cellular neural networks. Neural Netw. 11(9), 1601–1605 (1998)

    Google Scholar 

  2. S. Chen, S.A. Billings, Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 56(2), 319–346 (2007)

    MathSciNet  MATH  Google Scholar 

  3. T. Chen, Global exponential stability of delayed Hopfield neural networks. Neural Netw. 14(8), 977–980 (2001)

    Google Scholar 

  4. L. Chen, T. Huang, J.A. Tenreiro Machado, A.M. Lopes, Y. Chai, R.C. Wu, Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Networks 118, 289–299 (2019)

    MATH  Google Scholar 

  5. R. Coban, A context layered locally recurrent neural network for dynamic system identification. Eng. Appl. Artif. Intell. 26(1), 241–250 (2013)

    Google Scholar 

  6. K. Dietthelm, The Analysis of Fractional Differential Equations. An Application Oriented Exposition Using Differential Operators of Caputo Type (Springer, Berlin, 2010)

    Google Scholar 

  7. K. Ding, Q. Zhu, L. Liu, Extended dissipativity stabilization and synchronization of uncertain stochastic reaction-diffusion neural networks via intermittent non-fragile control. J. Frankl. Inst. 356(18), 11690–11715 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Z. Ding, Y. Shen, Global dissipativity of fractional-order neural networks with time delays and discontinuous activations. Neurocomputing 196, 159–166 (2016)

    Google Scholar 

  9. Z. Ding, Z. Zeng, H. Zhang, L. Wang, L. Wang, New results on passivity of fractional-order uncertain neural networks. Neurocomputing 351, 51–59 (2019)

    Google Scholar 

  10. B. Du, J. Lam, Stability analysis of static recurrent neural networks using delay-partitioning and projection. Neural Netw. 22(4), 343–347 (2006)

    MATH  Google Scholar 

  11. F. Du, J.G. Lu, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3016038

    Article  Google Scholar 

  12. Z. Feng, J. Lam, Stability and dissipativity analysis of distributed delay cellular neural networks. IEEE Trans. Neural Netw. 22(6), 976–981 (2011)

    Google Scholar 

  13. Z. Feng, W.X. Zheng, On extended dissipativity of discrete-time neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3293–3300 (2015)

    MathSciNet  Google Scholar 

  14. C.F. Juang, C.F. Huang, Y.Y. Lin, A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing. IEEE Trans. Fuzzy Syst. 17(5), 1092–1105 (2009)

    Google Scholar 

  15. E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)

    MATH  Google Scholar 

  16. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Application of Fractional Differential Equations (Elsevier, New York, 2006)

    MATH  Google Scholar 

  17. V. Lekshmikantham, S. Leela, J.V. Devi, Theory of Fractional Dynamical Systems (Cambridge Scientific Publishers, Cambridge, 2009)

    Google Scholar 

  18. W.I. Lee, S.Y. Lee, P.G. Park, A combined reciprocal convexity approach for stability analysis of static neural networks with interval time-varying delays. Neurocomputing 221, 168–177 (2017)

    Google Scholar 

  19. Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    MathSciNet  MATH  Google Scholar 

  20. W.J. Lin, Y. He, C.K. Zhang, F. Long, M. Wu, Dissipativity analysis for neural networks with two-delay components using an extended reciprocally convex matrix inequality. Inf. Sci. 450, 169–181 (2018)

    MathSciNet  MATH  Google Scholar 

  21. H.H. Lian, S.P. Xiao, H.C. Yan, F. Yang, H.B. Zeng, Dissipativity analysis for neural networks with time-varying delays via a delay-product-type Lyapunov functional approach. IEEE Trans. Neural Netw. Learn. Syst. 32(3), 975–984 (2021)

    MathSciNet  Google Scholar 

  22. J. Liang, J. Cao, A based-on LMI stability criterion for delayed recurrent neural networks. Chaos Solitons Fractals 28(1), 154–160 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Y. Liu, T. Wang, M. Chen, H. Shen, Y. Wang, D. Duan, Dissipativity-based state estimation of delayed static neural networks. Neurocomputing 247, 137–143 (2017)

    Google Scholar 

  24. S. Loghmanian, H. Jamaluddin, R. Ahmad, R. Yusof, M. Khalid, Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm. Neural Comput. Appl. 21, 1281–1295 (2012)

    Google Scholar 

  25. W. Ma, B. Ding, H. Yang, Q. Zhang, Mean-square dissipativity of numerical methods for a class of stochastic neural networks with fractional Brownian motion and jumps. Neurocomputing 166, 256–264 (2015)

    Google Scholar 

  26. W. Ma, X. Luo, Q. Zhu, Practical exponential stability of stochastic age-dependent capital system with Lévy noise. Syst. Control Lett. 144, 104759 (2020)

    MATH  Google Scholar 

  27. R. Manivannan, R. Samidurai, Q.X. Zhu, Further improved results on stability and dissipativity analysis of static impulsive neural networks with interval time-varying delays. J. Frankl. Inst. 354(14), 6312–6340 (2017)

    MathSciNet  MATH  Google Scholar 

  28. R. Manivannana, R. Samidurai, J. Cao, A. Alsaedi, F.E. Alsaadi, Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals. Inf. Sci. 424, 175–203 (2018)

    MathSciNet  MATH  Google Scholar 

  29. B.S. Mordukhovich, N.M. Nam, An Easy Path to Convex Analysis and Applications (Synthesis Lectures on Mathematics and Statistics, 2013)

  30. S.M.A. Pahnehkolaei, A. Alfi, J.A. TenreiroMachado, Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition. Appl. Math. Comput. 359, 278–293 (2019)

    MathSciNet  MATH  Google Scholar 

  31. R. Saravanakumar, G. Rajchakit, C.K. Ahn, H.R. Karimi, Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 395–405 (2019)

    Google Scholar 

  32. R. Saravanakumar, G. Rajchakit, M. Syed Ali, Y.H. Joo, Extended dissipativity of generalised neural networks including time delays. Int. J. Syst. Sci. 48(11), 2311–2320 (2017)

    MathSciNet  MATH  Google Scholar 

  33. R. Saravanakumar, G. Rajchakit, M. Syed Ali, Y.H. Joo, Exponential dissipativity criteria for generalized BAM neural networks with variable delays. Neural Comput. Appl. 31, 2717–2726 (2019)

    Google Scholar 

  34. N.H. Sau, M.V. Thuan, N.T.T. Huyen, Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach. Circuits Syst. Signal Process. 39, 5906–5925 (2020)

    Google Scholar 

  35. H. Shao, Less conservative delay-dependent stability criteria for neural networks with time-varying delays. Neurocomputing 73(7–9), 1528–1532 (2010)

    Google Scholar 

  36. J. Sun, J. Chen, Stability analysis of static recurrent neural networks with interval time-varying delay. Appl. Math. Comput. 221(15), 111–120 (2013)

    MathSciNet  MATH  Google Scholar 

  37. M. Syed Ali, N. Gunasekaran, State estimation of static neural networks with interval time-varying delays and sampled-data control. Comput. Appl. Math. 37, 183–201 (2018)

    MathSciNet  MATH  Google Scholar 

  38. H. Tan, M. Hua, J. Chen, J. Fei, Stability analysis of stochastic Markovian switching static neural networks with asynchronous mode-dependent delays. Neurocomputing 151, 864–872 (2015)

    Google Scholar 

  39. M.V. Thuan, N.H. Sau, N.T.T. Huyen, Finite-time \(H_{\infty }\) control of uncertain fractional-order neural networks. Comput. Appl. Math. 39, 59 (2020)

    MathSciNet  MATH  Google Scholar 

  40. M.V. Thuan, D.C. Huong, D.T. Hong, New results on robust finite-time passivity for fractional-order neural networks with uncertainties. Neural Process. Lett. 50(2), 1065–1078 (2019)

    Google Scholar 

  41. H. Trinh, H.T. Tuan, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018)

    MathSciNet  Google Scholar 

  42. Z. Wang, Y. Liu, M. Li, X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 17(3), 814–820 (2006)

    Google Scholar 

  43. F. Wang, X. Liu, M. Tang, L. Chen, Further results on stability and synchronization of fractional-order Hopfield neural networks. Neurocomputing 346, 12–19 (2019)

    Google Scholar 

  44. J.A. Wang, X.Y. Wen, B.Y. Hou, Advanced stability criteria for static neural networks with interval time-varying delays via the improved Jensen inequality. Neurocomputing 377, 49–56 (2020)

    Google Scholar 

  45. Z. Wu, Y. Zou, N. Huang, A system of fractional-order interval projection neural networks. J. Comput. Appl. Math. 294, 389–402 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Z.G. Wu, J.H. Park, H. Su, J. Chu, Dissipativity analysis for singular systems with time-varying delays. Appl. Math. Comput. 218(8), 4605–4613 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Z.G. Wu, J. Lam, H. Su, J. Chu, Stability and dissipativity analysis of static neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 199–210 (2012)

    Google Scholar 

  48. Z.G. Wu, J.H. Park, H. Su, J. Chu, Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. Nonlinear Dyn. 69, 1323–1332 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Z.G. Wu, P. Shi, H. Shu, J. Chu, Dissipativity analysis for discrete-time stochastic neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 345–355 (2013)

    Google Scholar 

  50. Z. Xu, H. Qiao, J. Peng, B. Zhang, A comparative study of two modeling approaches in neural networks. Neural Netw. 17(1), 73–85 (2003)

    MATH  Google Scholar 

  51. S. Xu, J. Lam, D.W.C. Ho, Y. Zou, Global robust exponential stability analysis for interval recurrent neural networks. Phys. Lett. A 325, 124–133 (2004)

    MATH  Google Scholar 

  52. X. Yao, M. Tang, F. Wang, Z. Ye, X. Liu, New results on stability for a class of fractional-order static neural networks. Circuits Syst. Signal Process. 39, 5926–5950 (2020)

    Google Scholar 

  53. Y. Yang, Y. He, Y. Wang, M. Wu, Stability analysis of fractional-order neural networks: an LMI approach. Neurocomputing 285, 82–93 (2018)

    Google Scholar 

  54. N. Yotha, T. Botmart, K. Mukdasai, W. Weera, Improved delay-dependent approach to passivity analysis for uncertain neural networks with discrete interval and distributed time-varying delays. Vietnam J. Math. 45, 721–736 (2017)

    MathSciNet  MATH  Google Scholar 

  55. S. Zhang, Y. Yu, H. Wang, Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal. Hybrid Syst. 16, 104–121 (2015)

    MathSciNet  MATH  Google Scholar 

  56. S. Zhang, Y. Yu, J. Yu, LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)

    MathSciNet  Google Scholar 

  57. H.B. Zeng, J.H. Park, C.H. Zhang, W. Wang, Stability and dissipativity analysis of static neural networks with interval time-varying delay. J. Frankl. Inst. 352(3), 1284–1295 (2015)

    MathSciNet  MATH  Google Scholar 

  58. X.M. Zhang, Q.L. Han, Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Netw. 54, 57–69 (2014)

    MATH  Google Scholar 

  59. Y. Zheng, J. Ma, L. Wang, Consensus of hybrid multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1359–1365 (2017)

    Google Scholar 

  60. Y. Zheng, Q. Zhao, J. Ma, L. Wang, Second-order consensus of hybrid multi-agent systems. Syst. Control Lett. 125, 51–58 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the associate editor and anonymous reviewers for their constructive comments that helped improve the quality and presentation of this paper. The research of Mai Viet Thuan is funded by the Ministry of Education and Training of Vietnam under Grant Number B2022-MDA-02. The research of Duong Thi Hong is supported by the International Mathematical Union (IMU) under the IMU Breakout Graduate Fellowship (IMU-BGF-2021-01) and the Thai Nguyen University level research topic (DH2021-TN06-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Viet Thuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D.T., Sau, N.H. & Thuan, M.V. New Criteria for Dissipativity Analysis of Fractional-Order Static Neural Networks. Circuits Syst Signal Process 41, 2221–2243 (2022). https://doi.org/10.1007/s00034-021-01888-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01888-2

Keywords

Mathematics Subject Classification

Navigation