Skip to main content
Log in

Concentration, Ricci Curvature, and Eigenvalues of Laplacian

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the concentration behavior of metric measure spaces. We prove the stability of the curvature-dimension condition with respect to the concentration topology due to Gromov. As an application, under the nonnegativity of Bakry–Émery Ricci curvature, we prove that the kth eigenvalue of the weighted Laplacian of a closed Riemannian manifold is dominated by a constant multiple of the first eigenvalue, where the constant depends only on k and is independent of the dimension of the manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bakry and M. Émery. Diffusions hypercontractives, Seminaire de probabilities, XIX, 1983/84. Lecture Notes in Mathematics, Vol. 1123. Springer, Berlin (1985), pp. 177–206 (French).

  2. Yu. Burago, and M. Gromov, and G. Pereĺman. A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Matemticheskikh Nauk 47 (2)284 (1992), 3–51, 222 [(Russian, with Russian summary); English transl., Russian Math. Surveys 47 (1992), no. 2, 1–58].

  3. P. Billingsley. Convergence of probability measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999).

  4. V. I. Bogachev. Measure theory, Vols. I, II. Springer, Berlin (2007).

  5. A.-I. Bonciocat. Curvature bounds and heat kernels: discrete versus continuous spaces, Ph.D. Thesis, University of Bonn (2008).

  6. Bonciocat A.-I., Sturm K.-T.: Mass transportation and rough curvature bounds for discrete spaces. Journal of Functional Analysis 9(256), 2944–2966 (2009)

    Article  MathSciNet  Google Scholar 

  7. D. Burago, and Y. Burago, and S. Ivanov. A course in metric geometry. Graduate Studies in Mathematics, Vol. 33. American Mathematical Society, Providence (2001).

  8. Cheng S.Y.: Eigenvalue comparison theorems and its geometric applications. Mathematische Zeitsdhrift 3(143), 289–297 (1975)

    Article  Google Scholar 

  9. F. R. K. Chung, A. Grigorýan, and S.-T. Yau, Eigenvalues and diameters for manifolds and graphs, Tsing Hua lectures on geometry & analysis (Hsinchu, 1990). International Press, Cambridge (1997), pp. 79–105.

  10. Colbois B., Savo A.: Large eigenvalues and concentration. Pacific Journal of Mathematics 2(249), 271–290 (2011)

    Article  MathSciNet  Google Scholar 

  11. D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschlager, Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Les Annales de la Faculté des Sciences Toulouse Mathématiques (6), (4)15 (2006), 613–635 (English, with English and French summaries).

  12. D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschlager. A Riemannian interpolation inequality ‘a la Borell, Brascamp and Lieb. Inventiones Mathematicae, (2)146 (2001), 219–257.

    Google Scholar 

  13. Fukaya K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Inventiones Mathematicae 3(87), 517–547 (1987)

    Article  MathSciNet  Google Scholar 

  14. K. Funano. Asymptotic behavior of mm-spaces, Doctoral Thesis, Tohoku University (2009).

  15. Funano K.: Estimates of Gromov’s box distance. Proceedings of the American Mathematical Society 8(136), 2911–2920 (2008)

    Article  MathSciNet  Google Scholar 

  16. K. Funano. Observable concentration of mm-spaces into spaces with doubling measures. Geometriae Dedicata, 127 (2007), 49–56.

    Google Scholar 

  17. A. Grigorýan. Heat kernels on weighted manifolds and applications, the ubiquitous heat kernel. Contemporary Mathematics, Vol. 398. American Mathematical Society, Providence (2006), pp. 93–191.

  18. M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. American Journal of Mathematics, (4)105 (1983), 843–854.

    Google Scholar 

  19. M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Reprint of the 2001 English edition, Modern Birkh´bfauser Classics, Birkhauser Boston Inc., Boston (2007) (based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates).

  20. A. S. Kechris. Classical descriptive set theory. Graduate Texts in Mathematics, Vol. 156. Springer, New York (1995).

  21. K. Kuwae, Y. Machigashira, and T. Shioya. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Mathematische Zeitschrift, (2)238 (2001), 269–316.

    Google Scholar 

  22. M. Ledoux. The concentration of measure phenomenon. Mathematical Surveys and Monographs, Vol. 89. American Mathematical Society, Providence (2001).

  23. P. Lévy. Problémes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, 2nd ed. Gauthier-Villars, Paris (1951) (French).

  24. P. Li and S. T. Yau. Estimates of eigenvalues of a compact Riemannian man- ifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI. American Mathematical Society, Providence (1980), pp. 205–239.

  25. J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics (2), (3) 169 (2009), 903–991.

  26. E. Milman. Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke Mathematical Journal, (2)154 (2010), 207–239.

    Google Scholar 

  27. E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Inventiones Mathematicae, (1)177 (2009), 1–43.

  28. V. D. Milman and G. Schechtman. Asymptotic theory of finite-dimensional normed spaces. Lecture Notes in Mathematics, Vol. 1200. Springer, Berlin (1986) (with an appendix by M. Gromov).

  29. V. D. Milman. The heritage of P. Lévy in geometrical functional analysis. Astérisque, 157–158 (1988), 273–301. [Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987)].

  30. S. Ohta. Ricci curvature, entropy and optimal transport. Séminaire et Congrès (2013, to appear).

  31. F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Communications in Partial Differential Equations (1–2)26 (2001), 101–174.

  32. A. Petrunin. Alexandrov meets Lott–Villani–Sturm (2010, preprint).

  33. C. Plaut. Metric spaces of curvature ≥ k, Handbook of geometric topology. North-Holland, Amsterdam (2002), pp. 819–898.

  34. M.-K. von Renesse and K.-T. Sturm. Transport inequalities, gradient estimates, entropy, and Ricci curvature. Communications in Pure and Applied Mathematics (7)58 (2005), 923– 940.

    Google Scholar 

  35. A. G. Setti. Eigenvalue estimates for the weighted Laplacian on a Riemannian manifold. Rendiconti del Seminario Matematico della Università à di Padova, 100 (1998) 27–55.

  36. K.-T. Sturm. Convex functionals of probability measures and nonlinear dif- fusions on manifolds. Journal de Mathématiques Pures et Appliquées (9), (2)84 (2005), 149–168 (English, with English and French summaries).

  37. K.-T. Sturm. On the geometry of metric measure spaces. I. Acta Mathematica, (1)196 (2006), 65–131.

  38. K.-T. Sturm. On the geometry of metric measure spaces. II. Acta Mathematica, (1)196 (2006), 133–177.

  39. C. Villani. Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 338. Springer, Berlin (2009) (old and new).

  40. C. Villani. Topics in optimal transportation. Graduate Studies in Mathematics, Vol. 58. American Mathematical Society, Providence (2003).

  41. Zhang H.-C., Zhu X.-P.: Ricci curvature on Alexandrov spaces and rigidity theorems. Communications in Analysis and Geometry 3(18), 503–553 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shioya.

Additional information

The authors are partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funano, K., Shioya, T. Concentration, Ricci Curvature, and Eigenvalues of Laplacian. Geom. Funct. Anal. 23, 888–936 (2013). https://doi.org/10.1007/s00039-013-0215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0215-x

Keywords

Navigation