Skip to main content
Log in

Nodal Domains of Maass Forms I

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

This paper deals with some questions that have received a lot of attention since they were raised by Hejhal and Rackner in their 1992 numerical computations of Maass forms. We establish sharp upper and lower bounds for the L 2-restrictions of these forms to certain curves on the modular surface. These results, together with the Lindelof Hypothesis and known subconvex L -bounds are applied to prove that locally the number of nodal domains of such a form goes to infinity with its eigenvalue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C.B. Balogh. Uniform asymptotic expansions of the modified Bessel function of the third kind of large imaginary order. Bulletin of the American Mathematical Society, (1)72 Part 1, (1966), 40–43.

  2. Balogh C.B.: Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM Journal on Applied Mathematics. 5(15), 1315–1323 (1967)

    Article  MathSciNet  Google Scholar 

  3. Burq N., Gèrard P., Tzvetkov N.: Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds. Duke Mathematical Journal. 3(138), 445–486 (2007)

    Article  Google Scholar 

  4. Bogomolny E., Schmit C.: Percolation model for nodal domains of chaotic wave functions. Physical Review Letters. 88, 114102 (2002)

    Article  Google Scholar 

  5. Bogomolny E., Schmit C.: Random wavefunctions and percolation. Journal of Physics A. 47(40), 14033–14043 (2007)

    Article  MathSciNet  Google Scholar 

  6. I. Chavel. Eigenvalues in Riemannian geometry. Academic Press, Inc., Orlando (1984).

  7. R. Courant and D. Hilbert. Methods of Mathematical Physics, vol. I. Wiley-Interscience, New York (1953).

  8. Donnely H., Fefferman C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93, 161–183 (1988)

    Article  MathSciNet  Google Scholar 

  9. Dunster T.M.: Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter. SIAM Journal on Mathematical Analysis. 4(21), 995–1018 (1990)

    Article  MathSciNet  Google Scholar 

  10. Dunster T.M.: Conical functions with one or both parameters large. Proceedings Royal Society of Edinburgh Section A. 119, 311–327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Edelman and E. Kostlan. How many zeros of a random polynomial are real? Bulletin of the American Mathematical Society (N.S.), (1)32 (1995), 1–37.

    Google Scholar 

  12. I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Translated from the Russian. 6th edition. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. Academic Press, Inc., San Diego (2000).

  13. Ghosh A., Sarnak P.: Real zeros of holomorphic Hecke cusp forms. Journal of European Mathematical Society (JEMS). 2(14), 465–487 (2012)

    Article  MathSciNet  Google Scholar 

  14. A. Ghosh, A. Reznikov and P. Sarnak. Nodal domains of Maass forms II, in preparation.

  15. Harcos G.: Uniform approximate functional equation for principal L-functions. IMRN. 18, 923–932 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hedlund G.A.: Fuchsian groups and transitive horocycles. Duke Mathematical Journal. 3(2), 530–0542 (1936)

    Article  MathSciNet  Google Scholar 

  17. D.A. Hejhal. The Selberg trace formula for \({{\rm PSL}(2, \mathbb{R})}\) , vol. 1. Springer Lecture Notes, vol. 548. Springer, Berlin (1976)

  18. Hejhal D.A., Rackner D.: On the topography of Maass wave forms. Experimental Mathematics. 1, 275–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoffstein J., Lockhart P.: Coefficients of Maass forms and the Siegel zero. Annals of Mathematics. 2(140), 161–181 (1994)

    Article  MathSciNet  Google Scholar 

  20. Huxley M.N.: Exponential sums and lattice points III. Proceedings of the London Mathematical Society. 3(87), 591–609 (2003)

    Article  MathSciNet  Google Scholar 

  21. Ivic A.: On sums of Hecke series in short intervals. J. Thèor. Nombres Bordeaux. 2(13), 453–468 (2001)

    Article  MathSciNet  Google Scholar 

  22. Iwaniec H.: Small eigenvalues of Laplacian for Γ0(N). Acta Arithmetica. 16, 65–82 (1990)

    MathSciNet  Google Scholar 

  23. Iwaniec H., Sarnak P.: L norms of eigenfunctions of arithmetic surfaces. Annals of Mathematics. 141, 301–320 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Jakobson. Quantum Unique Ergodicity for Eisenstein Series on \({{\rm PSL}(2,\mathbb{Z})\backslash {\rm PSL}(2,\mathbb{R})}\) . Annales de l’Institut Fourier. (5)4, (1994), 1477–1504.

  25. J. Jung. Zeros of eigenfunctions on hyperbolic surfaces lying on a curve, arXiv:1108.2335 [math.NT] (2011).

  26. M. Jutila and Y. Motohashi. Uniform bound for Hecke L-functions. Acta Mathematica, 195 (2005), 61–115.

    Google Scholar 

  27. H. Kim. Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. J. American Mathematical Society, (1)16, (2003), 139–183.

  28. H. Kim and P. Sarnak, Appendix to: H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. Journal of American Mathematical Society, (1)16 (2003), 175–181.

  29. K. Konrad. Asymptotic statistics of nodal domains of quantum chaotic billiards in the semiclassical limit, senior thesis, Dartmouth (2012).

  30. Lewy H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Communications in Partial Differential Equations. 2, 1233–1244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li X.: Upper bounds on L-Functions at the edge of the critical strip. International Mathematics Research Notices. 4, 727–755 (2010)

    Google Scholar 

  32. X. Li and M. Young. Additive twists of Fourier coefficients of symmetric-square lifts, arXiv:1106.1456v2 [math.NT] (2011).

  33. Lindenstrauss E.: Invariant measures and arithmetic quantum unique ergodicity. Annals of Mathematics. 2(163), 165–219 (2006)

    Article  MathSciNet  Google Scholar 

  34. W. Luo and P. Sarnak. Quantum ergodicity of eigenfunctions on \({{\rm PSL}(2, \mathbb{Z})\backslash\mathbb{H}}\) . Publ. Math. Inst. Hautes Études Sci. 81, (1995), 207–237.

  35. Luo W., Sarnak P.: Mass equidistribution for Hecke eigenforms. Communications on Pure and Applied Mathematics. 7(56), 874–891 (2003)

    Article  MathSciNet  Google Scholar 

  36. Molteni G.: Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product. Duke Mathematical Journal. 111, 133–158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Nastasescu. The number of points on a real plane curve, Senior Thesis, Princeton University (2011).

  38. Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. American Journal of Mathematics. 5(131), 1337–1357 (2009)

    Article  MathSciNet  Google Scholar 

  39. F.W.J. Olver. Asymptotics and special functions. Academic Press, N.Y. (1974)

  40. A. Reznikov. Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation theory. arXiv: math.RT/0403437 (2004).

  41. Sarnak P.: Estimates for RankinSelberg L-Functions and quantum unique ergodicity. Journal of Functional Analysis. 2(184), 419–453 (2001)

    Article  MathSciNet  Google Scholar 

  42. P. Sarnak. Restriction theorems and appendix 1 & 2: letter to Andrei Reznikov. http://www.math.princeton.edu/sarnak/SarnakJun08LtrNEW.pdf.

  43. A. Selberg. Collected Papers, vol. 1. With a foreword by K. Chandrasekharan, Springer, Berlin (1989), 626–674.

  44. K. Soundrarajan. Quantum unique ergodicity for \({{\rm SL}_2(\mathbb{Z})\backslash \mathbb{H}}\) . Annals of Mathematics, (2)172 (2010), 1529–1538.

  45. A. Stern. Bemerkungen iiber asymptotisches Verhalten von Eigenwerten und Eigenfunktionen, Dissertation, Göttingen 1925.

  46. Then H.: Maass cusp forms for large eigenvalues. Mathematics of Computation. 74, 363–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Toth J.A., Zelditch S.: Counting nodal lines which touch the boundary of an analytic domain. Journal of Differential Geometry. 81, 649–686 (2009)

    MathSciNet  MATH  Google Scholar 

  48. I.M. Vinogradov. Special variants of the method of trigonometric sums, (Nauka, Moscow), 1976; English transl. in his Selected works (Springer-Verlag) (1985).

  49. T.C. Watson. Rankin triple products and quantum chaos, Ph.D. Thesis, Princeton University (eprint available at arxiv.org:math/0810.0425v3 [math.NT]), (2002) to appear in Annals of Mathematics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sarnak.

Additional information

Dedicated belatedly to Dennis Hejhal on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Reznikov, A. & Sarnak, P. Nodal Domains of Maass Forms I. Geom. Funct. Anal. 23, 1515–1568 (2013). https://doi.org/10.1007/s00039-013-0237-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0237-4

Mathematics Subject Classification (2010)

Navigation