Skip to main content
Log in

Hyperbolic Wavelets and Multiresolution in \(H^{2}(\mathbb{T})\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In signal processing and system identification for \(H^{2}(\Bbb{T})\) and \(H^{2}(\Bbb{D})\) the traditional trigonometric bases and trigonometric Fourier transform are replaced by the more efficient rational orthogonal bases like the discrete Laguerre, Kautz and Malmquist-Takenaka systems and the associated transforms. These bases are constructed from rational Blaschke functions, which form a group with respect to function composition that is isomorphic to the Blaschke group, respectively to the hyperbolic matrix group. Consequently, the background theory uses tools from non-commutative harmonic analysis over groups and the generalization of Fourier transform uses concepts from the theory of the voice transform. The successful application of rational orthogonal bases needs a priori knowledge of the poles of the transfer function that may cause a drawback of the method. In this paper we give a set of poles and using them we will generate a multiresolution in \(H^{2}(\Bbb{T})\) and \(H^{2}(\Bbb{D})\). The construction is an analogy with the discrete affine wavelets, and in fact is the discretization of the continuous voice transform generated by a representation of the Blaschke group over the space \(H^{2}(\Bbb{T})\). The constructed discretization scheme gives opportunity of practical realization of hyperbolic wavelet representation of signals belonging to \(H^{2}(\Bbb{T})\) and \(H^{2}(\Bbb{D})\) if we can measure their values on a given set of points inside the unit circle or on the unit circle. Convergence properties of the hyperbolic wavelet representation will be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achierser, N.: Theory of Approximation. Frederich Ungar, New York (1956)

    Google Scholar 

  2. Bokor, J., Athans, M.: Frequency domain identification mit interferometer tested in generalized orthogonal basis. In: Proceedings of the 11th IFAC Symposium on System Identification, Kiayushu, Japan, vol. 4, pp. 1735–1739 (1997)

    Google Scholar 

  3. Bokor, J., Schipp, F., Szabó, Z.: Identification of rational approximate models in H using generalized orthonormal basis. IEEE Trans. Automat. Control 44(1), 153–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bultheel, A., Carrette, P.: Algebraic and spectral properties of general Toeplitz matrices. SIAM J. Control Optim. 41(5), 1413–1439 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bultheel, A., González-Vera, P.: Wavelets by orthogonal rational kernels. Contemp. Math. 236, 101–126 (1999)

    Google Scholar 

  6. Bultheel, A., González-Vera, P., Hendriksen, E., Njastad, O.: Orthogonal Rational Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  7. Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  8. Chui, C.K., Chen, G.: Signal Processing and Systems Theory. Series in Information Sciences, vol. 26. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dudley, W.N.F., Partington, J.R.: Robust identification in the disc algebra using rational wavelets and orthonormal basis functions. Int. J. Control 64(3), 409–423 (1996)

    Article  MATH  Google Scholar 

  11. Duren, P., Schuster, A.: Bergman Spaces. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  12. Evangelista, G., Cavaliere, S.: Discrete frequency-wraped wavelets: theory and applications. IEEE Trans. Signal Process. 46(4), 874–885 (1998)

    Article  MathSciNet  Google Scholar 

  13. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions trough integrable group representations. In: Cwinkel, M., et al. (eds.) Functions Spaces and Applications. Lecture Notes in Math., vol. 1302, pp. 307–340. Springer, Berlin (1989)

    Google Scholar 

  14. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decomposition I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goupilland, P., Grossman, A., Morlet, J.: Cycle-octave and related transforms in seismetic signal analysis. Geoexploration 25, 85–102 (1984)

    Article  Google Scholar 

  16. Handenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Text in Mathematics, vol. 199. Springer, New York (2000)

    Book  Google Scholar 

  17. Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31(4), 628–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Hoog, T.J.: Rational orthonormal basis and related transforms in linear system modeling. Netherlands by Ponsen and Looijn b.v., Netherlands (2001)

  19. Kisil, V.V.: Wavelets in Applied and Pure Mathematics. http://maths.leeds.ac.uk/kisilv/courses/wavelets.htlm

  20. Meyer, Y.: Ondolettes et Operateus. Hermann, New York (1990)

    Google Scholar 

  21. Mallat, S.: Theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern. Anal. Math. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  22. Ninness, B., Gustafsson, F.: Unifying construction of orthonormal bases for system identification. Department of Electrical Engineering, University of Newcastle, Newcastle, NSA, Australia, Tech. Rep. EE9443 (1994)

  23. Pap, M.: Properties of discrete rational orthonormal systems. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna, 2002, pp. 374–379. Dabra, Sofia (2003)

    Google Scholar 

  24. Pap, M., Schipp, F.: The voice transform on the Blaschke group I. Pure Math. Appl. 17(3–4), 387–395 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Pap, M., Schipp, F.: The voice transform on the Blaschke group II. Ann. Univ. Sci. Budapest. Sect. Comput. 29, 157–173 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Pap, M., Schipp, F.: The voice transform on the Blaschke group III. Publ. Math. 75(1–2), 263–283 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Partington, J.: Interpolation, Identification and Sampling. London Mathematical Society Monographs, vol. 17. Oxford University Press, London (1997)

    MATH  Google Scholar 

  28. Soumelidis, A., Bokor, J., Schipp, F.: Signal and system representations on hyperbolic groups: beyond rational Orthogonal Bases. In: ICC 2009 7th IEEE, International Conference on Computational Cybernetics (to appear)

  29. Soumelidis, A., Bokor, J., Schipp, F.: Detection of changes on signals and systems based upon representations in orthogonal rational bases. In: Proc. of 5th IFAC Symposium on Fault detection Supervision and safety for technical Processes, SAFEPROSS 2003, Washington DC, USA, June (2003). On CD

    Google Scholar 

  30. Soumelidis, A., Bokor, J., Schipp, F.: Representation and approximation of signals and systems using generalized Kautz functions. In: Proc. of the 36th Conference on Decisions and Control CDC’97, San Diego, CA, pp. 3793–3796 (1997)

    Chapter  Google Scholar 

  31. Soumelidis, A., Bokor, J., Schipp, F.: Frequency domain representation of signals in rational orthogonal bases. In: Proc. of the 10th Mediterranean Conference on Control and Automation, Lisabone, Portugal (2002). On CD. Med’(2002)

    Google Scholar 

  32. Soumelidis, A., Pap, M., Schipp, F., Bokor, J.: Frequency domain identification of partial fraction models. In: Proc. of the 15th IFAC World Congress, Barcelona, Spain, June, pp. 1–6 (2002)

    Google Scholar 

  33. Schipp, F., Gianone, L., Szabó, Z.: Identification in generalized orthonormal basis-frequency domain approach. In: Proc. of the 13th IFAC World Congress, San Francisco, CA, pp. 387–392 (1996)

    Google Scholar 

  34. Schipp, F., Wade, W.R.: Transforms on normed fields. Leaflets in Mathematics, Janus Pannonius University Pécs (1995)

  35. Schipp, F.: Wavelet like transform on the Blaschke group. In: Walsh and Dyadic Analysis, Proc. of the Workshop, NIS, pp. 85–93 (2007)

    Google Scholar 

  36. Szabó, Z.: Interpolation and quadrature formula for rational systems on the unit circle. Ann. Univ. Sci. Budapest. Sect. Comput. 21, 41–56 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Totik, V.: Recovery of H p-functions. Proc. Am. Math. Soc. 90, 531–537 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Ward, N.F.D., Partington, J.R.: Robust identification in the disc algebra using rational wavelets and orthonormal basis functions. Internat. J. Control 64, 409–423 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ward, N.F.D., Partington, J.R.: A construction of rational wavelets and frames in Hardy-Sobolev spaces with applications to system modeling. SIAM J. Control Optim. 36(2), 654–679 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Pap.

Additional information

Communicated by H.G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pap, M. Hyperbolic Wavelets and Multiresolution in \(H^{2}(\mathbb{T})\) . J Fourier Anal Appl 17, 755–776 (2011). https://doi.org/10.1007/s00041-011-9169-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9169-2

Keywords

Mathematics Subject Classification (2000)

Navigation