Skip to main content
Log in

Mechanical behaviour of Québec wood species heat-treated using ThermoWood process

Mechanische Eigenschaften von in Quebec vorkommenden Holzarten nach Behandlung mit dem ThermoWood-Verfahren

  • Kurzoriginalia Brief Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Finnish wood heat treatment technology, ThermoWood, was recently introduced to Québec, Canada by Ohlin Thermo Tech. Subsequently, a large number of initial trials were conducted on five commercially important Québec wood species, spruce (Picea spp.), pine (Pinus spp.), fir (Abies spp.), aspen (Populus spp.), and birch (Betula spp.). These species were thermally-modified in different batches at temperatures of 200 °C or higher. The static bending and hardness of the thermally-modified wood were examined. Decreases of 0% to 49% were observed in modulus of rupture of heat-treated spruce, pine, fir, and aspen depending on species and treatment schedules used; modulus of rupture of birch increased slightly after the heat treatment. The decrease in modulus of elasticity of heat-treated spruce and pine ranged from 4% to 28%; but the modulus of elasticity of heat-treated fir, aspen, and birch increased except one trial for fir. Hardness of the heat-treated wood increased or decreased depending on the species, test directions (radial, tangential, and longitudinal), and treatment schedules.

Zusammenfassung

ThermoWood ist ein aus Finnland stammendes Verfahren zur Wärmebehandlung von Holz, das seit kurzem von Ohlin Thermo Tech in Quebec, Kanada angewendet wird. In diesem Zusammenhang wurden an fünf wirtschaftlich bedeutenden, in Quebec vorkommenden Holzarten, nämlich Fichte (Picea spp.), Kiefer (Pinus spp.), Tanne (Abies spp.), Pappel (Populus spp.) und Birke (Betula spp.), zahlreiche Versuche durchgeführt. Diese Holzarten wurden bei verschiedenen Temperaturstufen von 200 °C oder höher wärmebehandelt, daran anschließend wurden die Biegefestigkeit und Härte des wärmebehandelten Holzes untersucht. Die Biegefestigkeit von wärmebehandelter Fichte, Kiefer, Tanne und Pappel nahm je nach Holzart und Behandlung zwischen 0% und 49% ab; wohingegen die Biegefestigkeit von Birke nach der Behandlung geringfügig höher war. Der Elastizitätsmodul von Fichte und Kiefer nahm zwischen 4 und 28% ab, wohingegen der E-Modul von Tanne, Pappel und Birke mit Ausnahme eines Versuchs bei Tanne zunahm. Die Härte des wärmebehandelten Holzes nahm abhängig von Holzart, Orientierung (radial, tangential und longitudinal) und Behandlung zu oder ab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Society for Testing and Materials (ASTM) (2004) Standard test methods for small clear specimens of timber. D-143-94. Vol. 04.10 on Wood. Annual Book of ASTM Standards, ASTM. West Conshohocken, PA

  2. Bengtsson C, Jermer J, Brem F (2002) Bending strength of heat-treated spruce and pine timber. IRG/WP 02-40242

  3. Callister WD (1994) Materials Science and Engineering: An Introduction. John Wiley and Sons, New York

    Google Scholar 

  4. Chanrion P, Schreiber J (2002) Bois Traité par Haute Température. CTBA, France

    Google Scholar 

  5. Dirol D, Guyonnet R (1993) The improvement of wood durability by retification process. IRG/WP 98-40015

  6. Finnish ThermoWood Association (2003) ThermoWood Handbook. Helsinki, Finland

  7. Kotilainen R (2000) Chemical changes in wood during heating at 150–260 °C. Ph.D. Thesis, Jyväskylä University, Finland

  8. Militz H (2002) Thermal treatment of wood: European processes and their background. IRG/WP 02-40241

  9. Rapp AO, Sailer M (2000) Heat treatment in Germany. Proceedings of Seminar “Production and development of heat treated wood in Europe”, Helsinki, Finland

  10. Sailer M, Rapp AO, Leithoff H (2000) Improved resistance of Scots pine and spruce by application of an oil-heat treatment. IRG/WP 00-40162

  11. Santos JA (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Technol 34:39–43

    Article  CAS  Google Scholar 

  12. Syrjänen T, Kangas E (2000) Heat treated timber in Finland. IRG/WP 00-40158

  13. Tjeerdsma BF, Boonstra M, Militz H (1998a) Thermal modification of non-durable wood species. IRG/WP 98-40124

  14. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998b) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153

    Article  CAS  Google Scholar 

  15. Troya MT, De Navarrete AM (1994) Study of the degradation of retified wood through ultrasonic and gravimetric techniques. IRG/WP 94-40030

  16. Vernois M (2001) Heat treatment of wood in France-state of the art. Proceedings of Special Seminar “Review on heat treatments of wood”, Antibes, France

  17. Viitanen HA, Jänsä S, Paajanen LM, Nurmi AJ, Viitaniemi P (1994) The effect of heat treatment on the properties of spruce. IRG/WP 94-40032

  18. Yildiz S (2002) Effects of heat treatment on water repellence and anti-swelling efficiency of beech wood. IRG/WP 02-40223

  19. Yildiz S, Çolakoğlu G, Yildiz ÜC, Gezer ED, Temiz A (2002) Effects of heat treatment on modulus of elasticity of beech wood. IRG/WP 02-40222

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J.L., Kocaefe, D. & Zhang, J. Mechanical behaviour of Québec wood species heat-treated using ThermoWood process . Holz Roh Werkst 65, 255–259 (2007). https://doi.org/10.1007/s00107-007-0173-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-007-0173-9

Keywords

Navigation