Skip to main content
Log in

The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Asian clams (Corbicula fluminea) with abnormally thickened shell valves were found in four rivers in the UK (Rivers Yare, Waveney, Thames and New Bedford River). The material making up these malformations was the rare calcium carbonate polymorph vaterite. Vaterite is seldom found in the natural environment because it is less stable than the other calcium carbonate polymorphs (aragonite and calcite). In the few reported cases of vaterite formation in molluscs, it is usually related to unusual biomineralisation events such as shell regeneration, pearls and initial stages of shell formation. We compared two populations from the Rivers Yare and Waveney in the Norfolk Broads, UK, one (River Waveney) displaying dominantly the normal Corbicula shell form with aragonitic shells. In the River Yare population, all individuals sampled had shell deformations to different extents. These deformations were apparent as bulges on the inside of the ventral shell margin. X-ray diffraction confirmed that the shell material in the bulges of recently collected clams was vaterite. Other parts of the deformed shells were aragonitic. The shell deformations alter the shell morphology, leading to higher and wider shells. The shell microstructure is fibrous in the vateritic parts and crossed-lamellar in the aragonitic parts of deformed or non-deformed shells. The cause for the malformations is probably a disrupted biomineralisation process in the bivalves. Fossil Corbicula specimens from the late Pleistocene had similar deformations, suggesting that this is not a response to anthropogenic causes, such as pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad Sci USA 82:4110–4114

    Article  CAS  PubMed  Google Scholar 

  • Albright JN (1971) Vaterite stability. Am Mineral 56:620–624

    CAS  Google Scholar 

  • Alzieu C, Heral T, Thibaud Y, Dardignac MJ, Feuillet M (1982) Influence des peintures antisalissures sur la calcification de la coquille de l'huitre Crassostrea gigas. Rev Trav Inst Pêches marit 45:101–116

    Google Scholar 

  • Behrens G, Kuhn LT, Ubic R, Heuer AH (1995) Raman spectra of vateritic calcium carbonate. Spectros Lett 28:983–995

    Article  CAS  Google Scholar 

  • Birkett JW, Noreng JMK, Lester JN (2002) Spatial distribution of mercury in the sediments and riparian environment of the River Yare, Norfolk, UK. Environ Pollut 116:65–74

    Article  CAS  PubMed  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991a) Distribution of heavy metals in the River Yare and its associated Broads I. Mercury and methylmercury. Sci Total Environ 102:147–168

    Article  CAS  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991b) Distribution of heavy metals in the River Yare and its associated Broads II. Copper and cadmium. Sci Total Environ 102:169–188

    Article  CAS  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991c) Distribution of heavy metals in the River Yare and its associated Broads III. Lead and zinc. Sci Total Environ 102:189–208

    Article  CAS  Google Scholar 

  • Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York, pp 69–113

    Google Scholar 

  • Coelho MR, Langston WJ, Bebianno MJ (2006) Effect of TBT on Ruditapes decussatus juveniles. Chemosphere 63:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Counts CL, Prezant RS (1982) Shell microstructure of Corbicula fluminea (Bivalvia: Corbiculidae). Nautilus 96:25–30

    Google Scholar 

  • Dame RF (1972) The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassostrea virginica. Mar Biol 17:243–250

    Article  Google Scholar 

  • Dowson PH, Pershke D, Bubb JM, Lester JN (1992) Spatial distribution of organotins in sediments of lowland river catchments. Environ Pollut 76:259–266

    Article  CAS  PubMed  Google Scholar 

  • Elliott P, zu Ermgassen PSE (2008) The Asian clam (Corbicula fluminea) in the River Thames, London, England. Aquat Inv 3:54–60

    Article  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Falini G, Fermani S, Vanzo S, Miletic M, Zaffino G (2005) Influence on the formation of aragonite or vaterite by otolith macromolecules. Eur J Inorg Chem 2005:162–167

    Article  Google Scholar 

  • Falini G, Fermani S, Tosi G, Dinelli E (2009) Calcium carbonate morphology and structure in the presence of seawater ions and humic acids. Cryst Growth Des 9:2065–2072

    Article  CAS  Google Scholar 

  • Gauldie RW (1993) Polymorphic crystalline structure of fish otoliths. J Morphol 218:1–28

    Article  Google Scholar 

  • Glover C, Kidwell SM (1993) Influence of organic matrix on the post-mortem destruction of molluscan shells. J Geol 101:729–747

    Article  Google Scholar 

  • Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666

    Article  CAS  Google Scholar 

  • Hall A, Taylor JD (1971) The occurrence of vaterite in gastropod egg-shells. Mineral Mag 38:521–522

    Article  CAS  Google Scholar 

  • Hasse B, Ehrenberg H, Marxen JC, Becker W, Epple M (2000) Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chem Eur J 6:3679–3685

    Article  CAS  Google Scholar 

  • Hayashi S, Ohkawa K, Suwa Y, Sugawara T, Asami T, Yamamoto H (2008) Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine. Macromol Biosci 8:46–59

    Article  CAS  PubMed  Google Scholar 

  • Higuera-Ruiz R, Elorza J (2009) Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences. Estuar Coast Shelf S 82:201–213

    Article  CAS  Google Scholar 

  • Hoare DJ (2007) Ecological change in shallow lakes through antifoulant biocide contamination. Dissertation, University College London

  • Howlett D, Baker R (1999) Corbicula fluminea (Müller): new to UK. J Conchol 36:83

    Google Scholar 

  • Jacob DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W (2008) Nanostructure, composition and mechanisms of bivalve shell growth. Geochim Cosmochim Acta 72:5401–5415

    Article  CAS  Google Scholar 

  • Kamhi SR (1963) On the structure of vaterite, CaCO3. Acta Crystallogr 16:770–772

    Article  CAS  Google Scholar 

  • Kessel E (1933) Über die Schale von Viviparus viviparus L. und Viviparus fasciatus Müll. Ein Beitrag zum Strukturproblem der Gastropodenschale. Z Morphol Oekol Tiere 27:129–198

    Article  Google Scholar 

  • Kralj D, Brečević L, Nielsen AE (1990) Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth. J Cryst Growth 104:793–800

    Article  CAS  Google Scholar 

  • Kralj D, Brečević L, Kontrec J (1997) Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth 177:248–257

    Article  CAS  Google Scholar 

  • Lakshminarayanan R, Chi-Jin EO, Loh XJ, Kini RM, Valiyaveettil S (2005) Purification and characterization of a vaterite-inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft-shelled turtle). Biomacromolecules 6:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14

    Google Scholar 

  • Lippmann F (1973) Sedimentary carbonate minerals. Springer, Berlin

    Google Scholar 

  • Lomovasky BJ, Gutiérrez JL, Iribarne OO (2005) Identifying repaired shell damage and abnormal calcification in the stout razor clam Tagelus plebeius as a tool to investigate its ecological interactions. J Sea Res 54:163–175

    Article  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA, Abbott DP (1975) Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). Science 188:363–365

    Article  CAS  PubMed  Google Scholar 

  • Lucas D, Andrews JE (1996) A re-examination of reported lacustrine vaterite formation in Holkham Lake, Norfolk, UK. J Sediment Res 66:474–476

    CAS  Google Scholar 

  • Ma HY, Lee IS (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Mater Sci Engin C 26:721–723

    Article  CAS  Google Scholar 

  • Ma H, Su A, Zhang B, Li RK, Zhou L, Wang B (2009) Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China. Progr Nat Sci 19:817–820

    Article  Google Scholar 

  • Machado J, Coimbra J, Sã C (1989) Shell thickening in Anodonta cygnea by TBTO treatments. Comp Biochem Physiol C Comp Pharmacol 92:77–80

    Article  Google Scholar 

  • Mackie GL (1978) Shell structure in freshwater Sphaeriaceae (Bivalvia: Heterodonta). Can J Zool 56:1–6

    Article  Google Scholar 

  • Mayer FK (1931) Röntgenographische Untersuchungen an Gastropodenschalen. Jena Zeitschr Naturwiss 65:487–513

    CAS  Google Scholar 

  • McMahon RF (1983) Ecology of an invasive pest bivalve, Corbicula. In: Russell-Hunter WD (ed) The Mollusca. Academic, London, pp 505–561

    Google Scholar 

  • Meenakshi VR, Blackwelder PL, Watabe N (1974) Studies on the formation of calcified egg-capsules of ampullarid snails. Calcif Tissue Int 16:283–291

    Article  CAS  Google Scholar 

  • Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62:2609–2619

    Article  CAS  Google Scholar 

  • Morat F, Betoulle S, Robert M, Thailly AF, Biagianti-Risbourg S, Lecomte-Finiger R (2008) What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecol Freshwat Fish 17:617–627

    Article  Google Scholar 

  • Müller SJ (2003) Ecology and impacts of the non-indigenous Asian clam Corbicula fluminea (Müller, 1774) in Britain. Dissertation, University of Cambridge

  • Page DS, Dassanayake TM, Gilfillan ES (1996) Relationship between tissue concentrations of tributyltin and shell morphology in field populations of Mytilus edulis. Bull Environ Contam Toxicol 56:500–504

    Article  CAS  PubMed  Google Scholar 

  • Palchik NA, Moroz TN (2005) Polymorph modifications of calcium carbonate in gallstones. J Cryst Growth 283:450–456

    Article  CAS  Google Scholar 

  • Perić J, Vučak M, Krstulović R, Brečević L, Kralj D (1996) Phase transformation of calcium carbonate polymorphs. Thermochim Acta 277:175–186

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  CAS  Google Scholar 

  • Pokroy B, Zolotoyabko E, Adir N (2006) Purification and functional analysis of a 40 kD protein extracted from the Strombus decorus persicus mollusk shells. Biomacromolecules 7:550–556

    Article  CAS  PubMed  Google Scholar 

  • Preece RC, Meijer T (2000) A review of the occurrence of Corbicula in the Pleistocene of north-west Europe. Geol Mijnbouw—NJG 79:241–255

    Google Scholar 

  • Prezant RS, Tan-Tiu A (1985) Comparative shell microstructure of North American Corbicula (Bivalvia: Sphaeriacea). Veliger 27:312–319

    Google Scholar 

  • Prince JS, Lynn MJ, Blackwelder PL (2006) White vesicles in the skin of Aplysia californica Cooper: a proposed excretory function. J Mollus Stud 72:405–412

    Article  Google Scholar 

  • Qiao L, Feng QL, Li Z (2007) Special vaterite found in freshwater lacklustre pearls. Cryst Growth Des 7:275–279

    Article  CAS  Google Scholar 

  • Qiao L, Feng QL, Liu Y (2008) A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolubility. Mater Lett 62:1793–1796

    Article  CAS  Google Scholar 

  • Rodhouse PG (1977) An improved method for measuring volume of bivalves. Aquaculture 11:279–280

    Article  Google Scholar 

  • Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71:1197–1213

    Article  CAS  Google Scholar 

  • Rowlands DLG, Webster RK (1971) Precipitation of vaterite in lake water. Nat Phys Sc 229:158

    CAS  Google Scholar 

  • Saleuddin ASM, Wilbur KM (1969) Shell regeneration in Helix pomatia. Can J Zool 47:51–53

    Article  CAS  Google Scholar 

  • Simon A, Poulicek M, Velimirov B, MacKenzie FT (1994) Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167–195

    Article  Google Scholar 

  • Sokolowski A, Fichet D, Garcia-Meunier P, Radenac G, Wolowicz MJ, Blanchard G (2002) The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica (L.) from the Gulf of Gdansk, Southern Baltic. Chemosphere 47:475–484

    Article  CAS  PubMed  Google Scholar 

  • Soldati AL, Jacob DE, Wehrmeister U, Hofmeister W (2008) Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls. Mineral Mag 72:579–592

    Article  CAS  Google Scholar 

  • Sparks BW, West RG (1970) Late Pleistocene deposits at Wretton, Norfolk. I. Ipswichian interglacial deposits. Phil Trans Roy Soc Lond B 258:1–30

    Article  Google Scholar 

  • Strayer DL (2008) A new widespread morphological deformity in freshwater mussels from New York. Northeast Nat 15:149–151

    Article  Google Scholar 

  • Sutor DJ, Wooley SE (1968) Gallstone of unusual composition: calcite, aragonite and vaterite. Science 159:1113–1114

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1973) The shell structure and mineralogy of the bivalvia: II. Lucinacea–Clavagellacea conclusions. Bull Br Mus Nat Hist Zool 22:253–294

    Google Scholar 

  • Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Nat Acad Sci USA 97:2123–2127

    Article  CAS  PubMed  Google Scholar 

  • Vecht A, Ireland TG (2000) The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochim Cosmochim Acta 64:2719–2725

    Article  CAS  PubMed  Google Scholar 

  • Waite ME, Evans KE, Thain JE, Waldock MJ (1989) Organotin concentrations in the Rivers Bure and Yare, Norfolk Broads, England. Appl Organomet Chem 3:383–391

    Article  CAS  Google Scholar 

  • Wang J, Becker U (2009) Structure and carbonate orientation of vaterite (CaCO3). Am Mineral 94:380–386

    Article  CAS  Google Scholar 

  • Watabe N (1983) Shell repair. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 289–316

    Google Scholar 

  • Watabe N, Meenakshi VR, Blackwelder PL, Kurtz EM, Dunkelberger DG (1976) Calcareous spherules in the gastropod Pomacea paludosa. In: Watabe N, Wilbur KM (eds) Mechanisms of mineralization in the invertebrates and plants. University South Carolina Press, Columbia, pp 283–308

    Google Scholar 

  • Wehrmeister U, Jacob DE, Soldati AL, Häger T, Hofmeister W (2007) Vaterite in freshwater cultured pearls from China and Japan. J Gemmol 31:269–276

    Google Scholar 

  • Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 236–287

    Google Scholar 

  • Wilbur KM, Watabe N (1963) Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann NY Acad Sci 109:82–112

    Article  CAS  PubMed  Google Scholar 

  • Willing MJ (2007) Sphaerium solidum and Corbicula fluminea: two rare bivalve molluscs in the River Great Ouse system in Cambridgeshire. Nat Cambs 49:39–49

    Google Scholar 

  • Wilmot NV, Barber DJ, Taylor JD, Graham AL (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Phil Trans Roy Soc Lond B 337:21–35

    Article  Google Scholar 

  • Zieritz A, Aldridge DC (2009) Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol J Linn Soc 98:814–825

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the staff from the Broads Authority, especially Dr. Dan Hoare, for their invaluable support during the sampling period. We are also very grateful to Philine zu Ermgassen, Dr. Paul Elliott, Derek Howlett, Roy Baker and Robert Winkler who helped with the collection of the specimens and Max Frenzel who helped search the fossil collections. Dr. John Taylor facilitated the use of the collections at the Natural History Museum (London). We want to thank Tony Abrahams for running the XRD samples and Dudley Simons for the beautiful photographs used in Fig. 1. Four anonymous reviewers greatly helped to improve the manuscript. Nicole Spann was supported by Ph.D. studentships from the Biotechnology and Biological Sciences Research Council, the Cambridge European Trust and the Balfour Fund. The experiments reported in this manuscript comply with the laws of the UK.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Spann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spann, N., Harper, E.M. & Aldridge, D.C. The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97, 743–751 (2010). https://doi.org/10.1007/s00114-010-0692-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-010-0692-9

Keywords

Navigation