Skip to main content

Advertisement

Log in

Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109

    Article  Google Scholar 

  • Altig R, McDiarmid RW (1999) Body plan: development and morphology. In: McDiarmid RW, Altig R (eds) Tadpoles. The biology of anuran larvae. The University of Chicago Press, Chicago, pp 24–51

    Google Scholar 

  • Altig R, McDiarmid RW (2006) Descriptions and biological notes on three unusual mantellid tadpoles (Amphibia: Anura: Mantellidae) from southeastern Madagascar. Proc Biol Soc Wash 119:418–425

    Article  Google Scholar 

  • Altig R, Whiles MR, Taylor CL (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52:386–395

    Article  Google Scholar 

  • Antwis RE, Haworth RL, Engelmoer DJ, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS One 9, e85563

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronesty E (2011) ea–utils: Command–line tools for processing biological sequencing data. http://code.google.com/p/ea–utils. Accessed 1 Oct 2015

  • Aronesty E (2013) TOBioiJ: comparison of sequencing utility programs. Open Bioinforma J 7:1–8

    Article  Google Scholar 

  • Arribas R, Díaz-Paniagua C, Caut S, Gomez-Mestre I (2015) Stable isotopes reveal trophic partitioning and trophic plasticity of a larval amphibian guild. PLoS One 10, e0130897

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5, e10957

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker MH, Brucker RM, Schwantes CR, Harris RN, Minibiole KPC (2009) The bacterially produced metabolite Violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75(21):6635–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, Minbiole KP, House LL, Jensen RV, Becker MH, Walke JB, Medina D, Ibáñez R, Harris RN (2015) Panamanian frog species host unique skin bacterial communities. Front Microbiol 6:1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorndal KA (1997) Fermentation in reptiles and amphibians. In: Mackie RI, White BA (eds) Gastrointestinal microbiology: volume 1, gastrointestinal ecosystems and fermentations. Chapman and Hall, New York, pp 199–230

    Chapter  Google Scholar 

  • Bjorndal KA, Pryor GS (2005) Effects of the nematode Gyrinicola batrachiensis on development, gut morphology, and fermentation in bullfrog tadpoles (Rana catesbeiana): a novel mutualism. J Exp Zool Part A 303:704–712

    Google Scholar 

  • Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    Article  PubMed  Google Scholar 

  • Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N (2013) Developmental origins of a novel gut morphology in frogs. Evol Dev 15:213–223

    Article  PubMed  Google Scholar 

  • Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanbäck R (2014) Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 17:979–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  CAS  PubMed  Google Scholar 

  • Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbiole KPC (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137

    Article  CAS  PubMed  Google Scholar 

  • Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Front Immunol 6:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317

    Article  CAS  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351

    Article  CAS  Google Scholar 

  • Derrien M, van Hylckama Vlieg JET (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–366

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  • Fox H (1984) Amphibian morphogenesis. Humana, New York

    Book  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosjean S, Strauß A, Glos J, Randrianiaina R-D, Ohler A, Vences M (2011a) Morphological and ecological uniformity in the funnel-mouthed tadpoles of Malagasy litter frogs, subgenus Chonomantis. Zool J Linnean Soc 162:149–183

    Article  Google Scholar 

  • Grosjean S, Randrianiaina R-D, Strauß A, Vences M (2011b) Sand-eating tadpoles in Madagascar: morphology and ecology of the unique larvae of the treefrog Boophis picturatus. Salamandra 47:63–76

    Google Scholar 

  • Harris RN, James TY, Lauer A, Simon MA, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56

    Article  Google Scholar 

  • Harris RN, Brucker RM, Walke JB et al (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    Article  CAS  PubMed  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    Article  CAS  PubMed  Google Scholar 

  • Inger RF (1986) Diets of tadpoles living in a Borneo rain forest. Alytes 5:153–164

    Google Scholar 

  • Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci U S A 111:E5049–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohl KD, Cary TL, Karasov WH, Dearing MD (2013) Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep 5:899–903

    Article  PubMed  Google Scholar 

  • Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD (2014a) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90:883–894

    Article  CAS  PubMed  Google Scholar 

  • Kohl KD, Skopec MM, Dearing MD (2014b) Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Phys 2:cou009

    Article  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kueneman JG, Wegener Parfrey L, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250

    Article  PubMed  Google Scholar 

  • Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. doi:10.1038/ismej.2015.168

    PubMed  Google Scholar 

  • Lauer A, Simon MA, Banning JL, Andre E, Duncan K, Harris RN (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3:630–640

    Article  Google Scholar 

  • Lauer A, Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2:145–157

    Article  CAS  PubMed  Google Scholar 

  • Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007a) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10:937–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Layman CA, Arrington DA, Montana CG, Post DM (2007b) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008a) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TC et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveros JC (2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html. Accessed 1 Oct 2015

  • Palm NW, de Zoete MR, Flavell RA (2015) Immune-microbiota interactions in health and disease. Clin Immunol 159(2):122–127

    Article  CAS  PubMed  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490

    Article  PubMed  PubMed Central  Google Scholar 

  • Pryor GS (2008) Anaerobic bacteria isolated from the gastrointestinal tracts of bullfrog tadpoles (Rana catesbeiana). Herpetol Conserv Biol 3:176–181

    Google Scholar 

  • Pryor GS (2014) Tadpole nutritional ecology and digestive physiology: implications for captive rearing of larval anurans. Zool Biol 33:502–507

    Article  Google Scholar 

  • Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67(2):880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossa-Ferres DC, Jim J, Fonseca MG (2004) Diets of tadpoles from a temporary pond in southeastern Brazil (Amphibia, Anura). Rev Bras Zool 21:745–754

    Article  Google Scholar 

  • Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54:572–586

    Article  Google Scholar 

  • Schmidt H, Strauß A, Reeve E, Letz A, Ludewig AK, Neb D, Pluschzick R, Randrianiaina RD, Reckwell D, Schröder S, Wesolowski A, Vences M (2008) Descriptions of the remarkable tadpoles of three treefrog species, genus Boophis, from Madagascar. Herpetol Notes 1:49–57

    Google Scholar 

  • Segata N, Izard J, Walron L, Gevers D, Miropolsky L, Garrett W, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauß A, Reeve E, Randrianiaina RD, Vences M, Glos J (2010) The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10:12. doi:10.1186/1472-6785-10-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Strauß A, Randrianiaina RD, Vences M, Glos J (2013) Species distribution and assembly patterns of frog larvae in rainforest streams of Madagascar. Hydrobiol 702:27–43

    Article  Google Scholar 

  • Toloza EM, Diamond JM (1990) Ontogenetic development of nutrient transporters in bullfrog intestine. Am J Physiol 258:G760–769

    CAS  PubMed  Google Scholar 

  • Tuddenham S, Sears CL (2015) The intestinal microbiome and health. Curr Opin Infect Dis 28(5):464–470

    Article  CAS  PubMed  Google Scholar 

  • Vences M, Gehara M, Köhler J, Glaw F (2012) Description of a new Malagasy treefrog (Boophis) occurring syntopically with its sister species, and a plea for studies on non-allopatric speciation in tropical amphibians. Amphibia-Reptilia 33:503–520

    Article  Google Scholar 

  • Verburg P, Kilham SS, Pringle CM, Lips KR, Drake DL (2007) A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. J Trop Ecol 23:643–653

    Article  Google Scholar 

  • Viertel B, Richter S (1999) Anatomy: viscera and endocrines. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 92–148

    Google Scholar 

  • Vlčková K, Mrázek J, Kopečný J, Petrželková KJ (2012) Evaluation of different storage methods to characterize the fecal bacterial communities of captive western lowland gorillas (Gorilla gorilla gorilla). J Microbiol Methods 91:45–51

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiles MR, Lips KR, Pringle CM et al (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4:27–34

    Article  Google Scholar 

  • Wiggins PJ, Smith JM, Harris RN, Minbiole KPC (2011) Gut of red-backed salamanders (Plethodon cinereus) may serve as a reservoir for an antifungal cutaneous bacterium. J Herpetol 45:329–332

    Article  Google Scholar 

  • Woodhams DC, Vredenburg VT, Simon M, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398

    Article  Google Scholar 

  • Woodhams DC, Bosch J, Briggs CJ et al (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Zina J, Ennser J, Pinheiro SCP, Haddad CFB, Toledo LF (2007) Taxocenose de anuros de uma mata semidecídua do interior do Estado de São Paulo e comparações com outras taxocenoses do Estado, sudeste do Brasil. Biota Neotropical 7:1–9

    Google Scholar 

Download references

Acknowledgments

Work in Madagascar was made possible by a collaboration accord between the Université d’Antananarivo (Département de Biologie Animale), the Ministère de l’Environnement, des Eaux et Forêts of the Republic of Madagascar, and the Technische Universität Braunschweig. We are grateful to the Malagasy authorities for research and export permits. We are deeply indebted to Otto Larink (TU Braunschweig) for his kind help with identifying the tadpole food items. Meike Kondermann was of invaluable help with lab work. Work in Madagascar was supported by the Volkswagen Foundation to MV, JG, and RDR; by grants of the Deutsche Forschungsgemeinschaft to MV (VE247/2-1 and VE247/9-1) and JG (GL 665/1-1); and by fellowships of the Deutscher Akademischer Austauschdienst to MB and RDR. Maria J. O. Campos and Marcelo de Carvalho authorized our entry into the work area in Itapé, Rio Claro, SP, Brazil. Work in Brazil was supported by a visiting researcher grant of CAPES to MV, CFBH, and ML (88881.062205/2014-01). CFBH thanks grant #2013/50741-7, São Paulo Research Foundation (FAPESP) and CNPq, for a research fellowship. Experiments were approved by the Ethics Committee of UNESP Rio Claro (permit no. 36/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vences.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vences, M., Lyra, M.L., Kueneman, J.G. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci Nat 103, 25 (2016). https://doi.org/10.1007/s00114-016-1348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-016-1348-1

Keywords

Navigation