Skip to main content
Log in

ELA-ICP-MS U–Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for porphyry-related mineralization

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

ELA-ICP-MS U–Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallón Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multi-vent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46±0.14 to 7.94±0.27 Ma. Regionally extensive silicic explosive volcanism occurred at ~8.0 Ma (8.05±0.13 and 7.96±0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02±0.14 and 7.98±0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95±0.17 Ma) and rhyolitic diatremes (7.79±0.13 Ma) deposited thick tuff blankets across the region. Emplacement of large intermediate composition stocks occurred at 7.37±0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10±0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10± 0.06 to 6.93±0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92±0.07 Ma).

The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu–Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida. Geol So Am Bull 100:1640–1656

    Article  CAS  Google Scholar 

  • Arribas A Jr, Hedenquist JW, Itaya T, Okada T, Concepción RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 ka in northern Luzon, Philippines. Geology 23:337–340

    Article  CAS  Google Scholar 

  • Ballard JR (2001) A comparative study between the geochemistry of ore-bearing and barren calc-alkaline intrusions: PhD Thesis, Australian National University

  • Ballard JR, Palin JM, Williams IS, Campbell IH (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386

    CAS  Google Scholar 

  • Barth S, Oberli F, Meier M (1989) U–Th–Pb systematics of morphologically characterized zircon and allanite: a high-resolution isotopic study of the Alpine Rensen pluton (northern Italy). Earth Planet Sci Lett 95:235–254

    Article  CAS  Google Scholar 

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II, Hydrothermal alteration and mineralization. In: Skinner BJ (ed) Econ Geol 75th anniversary volume; 1905–1980. Society of Economic Geologists Publication, pp 235–269

  • Black LP, Kamo SL, Williams IS, Foudoulis C, Claoué-Long JC, Korsch RJ, Davis DW (2000) The quest for a high-quality zircon standard for microbeam Pb–U–Th geochronology. Geol Soc Aust Abstr 59:43

    Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stages. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 34–76

  • Caelles JC (1979) The geological evolution of the Sierras Pampeanas Massif, La Rioja and Catamarca Provinces, Argentina. PhD Thesis, Queen's University

  • Caelles JC, Clark AH, Farrar E, McBride SL, Quirt S (1971) Potassium–argon ages of porphyry copper deposits and associated rocks in the Farallón Negro-Capillitas district, Catamarca, Argentina. Econ Geol 66:961–964

    CAS  Google Scholar 

  • Camus F (2002) The Andean porphyry systems. In: Cooke DR, Pongratz J (eds) Giant ore deposits: characteristics, genesis and exploration. CODES Special Publication 4, Hobart, pp 5–22

  • Cathles LM (1981) Fluid flow and genesis of hydrothermal ore deposits. In: Skinner BJ (ed) Economic Geology 75th anniversary volume; 1905–1980. Society of Economic Geologists Publication, pp 424–457

  • Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

    CAS  Google Scholar 

  • Clark AH, Farrar E, Caelles JC, Haynes SJ, Lortie RB, McBride SL, Quirt GS, Robertson RCR, and Zentilli M (1976) Longitudinal variations in the metallogenetic evolution of the Central Andes; a progress report. In: Strong DF (ed) Special paper 14. Metallogeny and Plate Tectonics, Geological Association of Canada Special, pp 23–58

  • Clark AH, Tosdal RM, Farrar E, Plazolles VA (1990) Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru. Econ Geol 85:1604–1628

    CAS  Google Scholar 

  • Cliff RA (1985) Isotopic dating of metamorphic belts. J Geol Soc Lond 142:97–110

    CAS  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using sensitive high mass-resolution ion microprobe. J Geophys Res 89(suppl):B525–B524

    Google Scholar 

  • Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile porphyry Copper deposit revisited: geologic and geochronologic framework. Int Geol Rev 39:22–54

    Google Scholar 

  • Coughlin TJ, Holcombe RJ (2002) Linked faults and porphyry-skarn mineralization in the Central Andes. In: Vearncombe S (ed) Applied structural geology for mineral exploration and mining. Aust Inst Geosci Bull 36:36–38

    Google Scholar 

  • Coughlin TJ, O'Sullivan PB, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina; implications for the mechanism of plateau uplift in the Andes. Geology 26:999–1002

    Article  Google Scholar 

  • Cuadra P (1986) Geocronologia K–Ar del yacimiento El Teniente y areas adyacentes. Rev Geol Chile 27:3–26

    Google Scholar 

  • Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing earth. Earth Planet Sci Lett 28:155–171

    CAS  Google Scholar 

  • Damm KW, Harmon RS, Kelley S (1994) Some isotopic and geochemical constraints on the origin and evolution of the Central Andean basement (19°−24°S). In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the southern Central Andes; structure and evolution of an active continental margin. Springer, Berlin Heidelberg New York, pp 263–276

  • Dawson SE (1994) The occurrence of gold at the Bajo de la Alumbrera porphyry copper–gold deposit, northwestern Argentina. MSc Thesis, University of Arizona

  • de Urreiztieta M, Gapais D, Le CC, Cobbold PR, Rossello E (1996) Cenozoic dextral transpression and basin development at the southern edge of the Puna Plateau, northwestern Argentina. Tectonophysics 254:17–39

    Article  Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposits, Nevada: a 6-km vertical reconstruction. Econ Geol 87:1963–2001

    CAS  Google Scholar 

  • Dürr S, Seide E, Kreuzer H, Harre W (1978) Témoins d'un mètamorphisme d'àge crètacè supèrieur dans I'Egèide: dations radiomètriques de minèraux provenant de l'île de Nikourià (Cyclades, Grèce). Bull Geol Soc France 20:209–213

    Google Scholar 

  • Elder JW (1977) Model of hydrothermal ore genesis: Volcanic Studies Group of the Geological Society of London, 21–22 January 1976, Proceedings, pp 4–13

    Google Scholar 

  • Gebauer D, Grünenfelder M (1979) U–Th–Pb dating of minerals. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 101–131

  • Guilbert JM (1995) Geology, alteration, mineralization, and genesis of the Bajo de la Alumbrera porphyry copper–gold deposit, Catamarca province, Argentina. Arizona Geol Soc Dig 20:646–656

    Google Scholar 

  • Gustafson LB (1978) Some major factors of porphyry copper genesis. Econ Geol 73:600–607

    CAS  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Google Scholar 

  • Godeas MC, Segal de Svetliza SJ (1980) Alteración hidrotermal y mineralización en el Bajo la Alumbrera, Provincia de Catamarca. Rev Asoc Geol Argentina 35:318–331

    Google Scholar 

  • González OE (1975) Geología y alteración en el cobre porfidico "Bajo la Alumbrera": Rep. Argentina: II. Congreso Ibero-Americano de Geología Económica, pp 247–270

  • González Bonorino F (1950) Geologia y petrografia de las hojas 12d (Capillitas) y 13d (Andalgalá): Buenos Aires Direccion Nacional de Geologia y Mineria, Boletin

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in Late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    CAS  Google Scholar 

  • Harris AC (2002) The genesis of a porphyry Cu–Au deposit, Farallón Negro Volcanic Complex, NW Argentina. PhD Thesis, University of Queensland

  • Hedenquist JW, Richards JP (1998) The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. In: Richards JP, Larson PB (eds) Techniques in hydrothermal ore deposits geology. Rev Econ Geol 10:235–256

    Google Scholar 

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centred hydrothermal system: far Southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ Geol 93:374–404

    Google Scholar 

  • Henry CD, Elson HB, Castor SB (1995) Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Geol Soc Am Abstr Programs 27:A329

    Google Scholar 

  • Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500

    Article  CAS  Google Scholar 

  • Horn I, Rudnick RL, McDonough WE (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation ICP-MS: Application to U–Pb geochronology. Chem Geol 164:281–301

    Article  CAS  Google Scholar 

  • Hwang IG, Chough SK, Hong SW, Choe NV (1995) Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sediment Geol 98:147–179

    Article  Google Scholar 

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764

    Google Scholar 

  • Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol So Am Bull 94:341–361

    Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes. In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Publ 7:27–59

    Google Scholar 

  • Keay S (1998) The geological evolution of the Cyclades, Greece: constraints from SHRIMP U–Pb geochronology. PhD Thesis, Australian National University

  • Landtwing MR, Dillenbeck ED, Leake MH, Heinrich CA (2002) Evolution of the breccia-hosted porphyry Cu–Mo–Au deposit at Agua Rica, Argentina: progressive unroofing of a magmatic-hydrothermal system. Econ Geol 97:1273–1292

    CAS  Google Scholar 

  • Lanphere MA, Baadsgaard H (2001) Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chem Geol 175:653–671

    Article  CAS  Google Scholar 

  • Llambías EJ (1972) Estructura del grupo volcanico Farallón Negro, Catamarca, República Argentina. Rev Asoc Geol Argentina 27:161–169

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry copper ore deposits. Econ Geol 65:373–408

    Google Scholar 

  • Lucassen F, Becchio R, Wilke HG, Franz G, Thirlwall MF, Viramonte J, Wemmer K, (2000) Proterozoic–Paleozoic development of the basement of the Central Andes (18–26°S): a mobile belt of the South American craton. J S Am Earth Sci 13:697–715

    Article  Google Scholar 

  • Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos district, Chile. Econ Geol 92:784–806

    CAS  Google Scholar 

  • Martin MV, Dilles JH, Proffett JM (1999) U–Pb geochronologic constraints for the Butte porphyry system. Geol Soc Am Abstr Programs 31:380

    Google Scholar 

  • Mathur R, Ruiz J, Munizaga F (2000) Relationship between copper tonnage of Chilean base metal porphyry deposits and Os isotope ratios. Geology 28:555–558

    CAS  Google Scholar 

  • Mattinson JM (1973) Anomalous isotopic composition of lead in young zircons. Carnegie Institute Washington Yearbook vol 72, pp 613–616

  • McBride SL, Caelles JC, Clark AH, Farrar E (1976) Paleozoic radiometric age provinces in the Andean basement, Latitudes 25°–30°S. Earth Planet Sci Lett 29:373–383

    Article  CAS  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2 edn. Oxford University Press, New York

  • McInnes BIA, Farley KA, Sillitoe RH, Kohn BP (1999) Application of apatite (U–Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Econ Geol 94:937–948

    CAS  Google Scholar 

  • Méndez V (1997) Yacimiento Bajo la Alumbrera, Provincia de Catamarca, República Argentina. Rev Asoc Argentina Geól Econ 11:15–30

    Google Scholar 

  • Mirre JC, Aceñolaza FG (1972) El hallazgo de Oldhamia sp. (traza fosil) y su valor como evidencia de edad Cambrica para el supuesto Precambrico del borde occidental del Aconquija, Prov de Catamarca. Ameghiniana 9:72–78

    Google Scholar 

  • Norton D, Cathles LM (1979) Thermal aspects of ore deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 611–631

  • Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am J Sci 277:937–981

    Google Scholar 

  • Pankhurst RJ, Hole MJ, Brook M (1988) Isotope evidence for the origin of Andean granites. Trans R Soc Edinb Earth Sci 79:123–133

    CAS  Google Scholar 

  • Parry WT, Wilson PN, Jasumback MD, Heizler MT (1997) Clay mineralogy and 40Ar/39Ar dating of phyllic and argillic alteration at Bingham, Utah. Geol Soc Am Abstr Programs 29:282

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

    CAS  Google Scholar 

  • Pe-Piper G, Kotopouli CN, Piper DJW (1997) Granitoid rocks of Naxos, Greece: regional geology and petrology. Geol J 32:153–171

    Article  Google Scholar 

  • Peréllo J, Rojas N, Devaux C, Fava L, Etchart E Harman P (1998) Discovery of the Agua Rica porphyry Cu–Mo–Au deposit, Catamarca province, northwestern Argentina, Part II: geology. Australian Mineral Foundation Symposium, Perth, Western Australia, Proceedings, pp 117–132

  • Proffett JM (1995) Geology of the Bajo de la Alumbrera porphyry Cu–Au deposits, Catamarca Province, Argentina. Minera Alumbrera Ltd, Internal Report

  • Proffett JM (1997) Geology of the Bajo de la Alumbrera porphyry Cu–Au deposits, Catamarca Province, Argentina. Minera Alumbrera, Internal Report

  • Ramos VA, Reynolds JH, Jordan TE, Tabbutt KD (1988) Time constraints for the uplift of the Sierras de Toro Negro, Umango, and Espinal, western Sierras Pampeanas, Argentina. Geol Soc Am Abstr Programs 20:61

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, (1998) Early evolution of the Proto-Andean margin of South America. Geology 26:707–710

    Article  Google Scholar 

  • Reynolds JH, Tabbutt KT, Johnson NM, Jordan TE (1987) Non-systematic uplift of the northwestern Sierras Pampeanas, Catamarca Province, Argentina; interpretation of magnetic polarity stratigraphy data. Geol Soc Am Abstr Programs 19:817

    Google Scholar 

  • Reynolds P, Ravenhurst C, Zentilli M, Lindsay D (1998) High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem Geol 148:45–60

    CAS  Google Scholar 

  • Richards JP, McDougall I (1990) Geochronology of the Porgera gold deposit, Papua New Guinea: resolving the effects of excess argon on K–Ar and 40Ar/39Ar age estimates for magmatism and mineralization. Geochim Cosmochim Acta 54:1397–1415

    Article  CAS  Google Scholar 

  • Richards JP, Noble SR, Pringle MS (1999) A revised Late Eocene age for porphyry Cu magmatism in the Escondida Area, Northern Chile. Econ Geol 94:1231–1248

    CAS  Google Scholar 

  • Roberts HJ, Kelley SP, Dahl PS (2001) Obtaining geologically meaningful 40Ar–39Ar ages from altered biotite. Chem Geol 172:277–290

    Article  CAS  Google Scholar 

  • Rojas N, Peréllo J, Harman P, Cabello J, Devaux C, Fava L, Etchart E (1998) Discovery of the Agua Rica porphyry Cu–Mo–Au deposit, Catamarca province, northwestern Argentina, Part I: exploration and discovery. Australian Mineral Foundation Symposium, Perth, Western Australia, Proceedings, pp 111–117

  • Rossello EA (1980) Nuevo complejo volcanico Vicuna Pampa, Departamento Belen, Provincia de Catamarca. Rev Asoc Geol Argentina 35:436–438

    Google Scholar 

  • Sasso AM (1997) Geological evolution and metallogenetic relationships of the Farallón Negro volcanic complex, NW Argentina. PhD Thesis, Queens University

  • Sasso AM, Clark AH (1998) The Farallón Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu–Au metallogeny in the Andean back-arc. Soc Econ Geol Newslett 34(1):8–18

    Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schmitz MD, Bowring SA (2001) U–Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U–Pb geochronology and its application to young volcanic rocks. Geochim Cosmochim Acta 65:2571–2587

    Article  CAS  Google Scholar 

  • Silberman ML, Bonham HF Jr, Garside LJ, Ashley RP (1979) Timing of hydrothermal alteration-mineralization and igneous activity in the Tonopah mining district and vicinity, Nye and Esmeralda Counties, Nevada. Nevada Bur Mines Geol Report 33:119–126

    Google Scholar 

  • Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67:184–197

    CAS  Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68:799–815

    CAS  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388

    CAS  Google Scholar 

  • Sillitoe RH (2000) Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev Econ Geol 13:315–345

    Google Scholar 

  • Sister RG (1963) Informe geológico-económico de Farallón Negro y zona adyacente, Distrito Haulfin, Departamento Belen, Provincia de Catamarca, Opera Lilloana, VIII

  • Skewes MA, Stern CR (1994) Tectonic trigger for the formation of Late Miocene Cu-rich megabreccias in the Andes of central Chile. Geology 22:551–554

    CAS  Google Scholar 

  • Skewes MA, Stern CR (1995) Genesis of the giant Late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. Int Geol Rev 37:893–909

    Google Scholar 

  • Smalley R (1996) Andean crustal and upper mantle structure in the thick-skinned Sierras Pampeanas of San Juan, Argentina. Geol Soc Am Abstr Programs 28:112

    Google Scholar 

  • Smith RL, Shaw HR (1979) Igneous-related geothermal systems. US Geol Surv Circ 790:12–17

    Google Scholar 

  • Snee L, Miggins D, Geissman JW, Reed MH, Dilles JH, Zhang L (1999) Thermal history of the Butte porphyry system, Montana. Geol Soc Am Abstr Programs 31:380

    Google Scholar 

  • Stambuk V, Blondel J, Serrano L (1982) Geologia del yacimiento Rio Blanco. Congr Geol Chileno Actas 2:E419–E442

    Google Scholar 

  • Stults A (1985) Geology of the Bajo de la Alumbrera porphyry copper and gold prospect, Catamarca Province, Argentina. MSc Thesis, University of Arizona

  • Strecker MR, Cerveny P, Bloom AL, Malizia D (1989) Late Cenozoic tectonism and landscape development in the foreland of the Andes; northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics 8:517–534

    Google Scholar 

  • Strecker MR, Bloom AL, Malizia D (1990) Neotectonic activity in the northern Sierras Pampeanas, Argentina: Colloques et Seminaires. Institut de Recherche Scientifique pour le Developpement en Cooperation, Paris, pp 99–102

  • Tabbutt KD (1990) Temporal constraints on the tectonic evolution of Sierra de Famatina, northwestern Argentina, using the fission-track method to date tuffs interbedded in synorogenic clastic sedimentary strata. J Geol 98:557–566

    Google Scholar 

  • Tabbutt K, Naeser CW, Jordan TE, Cerveny PF (1987) Edades nuevas por metodo de trazas de fision de todas Mio-Pliocene en las sierras Pampeanas y la Precordillera de Argentina. Actas Congr Geol Argentino 4:222–224

    Google Scholar 

  • Tilton GR, Pollak RJ, Clark AH, Robertson RCH (1981) Isotopic composition of Pb in central Andean ore deposits. Geol Soc Am Mem 154:791–816

    CAS  Google Scholar 

  • Titley SR (1982) The style and progress of mineralization and alteration in porphyry copper systems. In: Titley SR (ed) Advances in geology of the porphyry copper deposit, southwestern North America. University of Arizona Press, Tucson, pp 93–116

  • Titley SR, Beane RE (1981) Porphyry copper deposits; part I, geologic settings, petrology, and tectogenesis. In: Skinner BJ (ed) Economic Geology 75th Anniversary Volume; 1905–1980. Society of Economic Geologists Publication, pp 214–235

  • Ulrich T, Heinrich CA (2001) Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina. Econ Geol 96:1719–1742

    CAS  Google Scholar 

  • Ulrich T, Günthur D, Heinrich CA (2001) The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774

    CAS  Google Scholar 

  • Walker JA, Moulds TN, Zentilli M, Feigenson MD (1991) Spatial and temporal variations in volcanics of the Andean Central Volcanic Zone (26 to 28°S). Geol Soc Am Spec Pap 265:139–155

    Google Scholar 

  • Warnaars FW, Holmgren C, Barassi S (1985) Porphyry copper and tourmaline breccias at Los Bronces-Rio Blanco, Chile. Econ Geol 80:1544–1565

    CAS  Google Scholar 

  • Watanabe Y, Stein HJ, Morgan JW, Markey RJ (1999) Re–Os geochronology brackets timing and duration of mineralization for the El Salvador porphyry Cu–Mo deposit, Chile. Geol Soc Am Abstr Programs 31:30

    Google Scholar 

  • Watson EB, Cherniak DJ, Hanchar JM, Harrison TM, Wark DA (1997) The incorporation of Pb into zircon. Chem Geol 141:19–31

    Article  CAS  Google Scholar 

  • Wijbrans JR, McDougall I (1988) Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6:571–594

    CAS  Google Scholar 

  • Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo Volcano, New Zealand. Phil Trans R Soc Lond, Phys Sci Eng 343:205–306

    Google Scholar 

  • Zentilli M, Krogh TE, Maksaev V, Alpers CN (1994) Uranium-lead dating of zircons from the Chuquicamata and La Escondida porphyry copper deposits, Chile: inherited zircon core of Paleozoic age with Tertiary overgrowths. Comunicaciones 45:101–110

    Google Scholar 

Download references

Acknowledgements

This project forms part of the first author's doctoral research at the University of Queensland, which was funded by an Australian Postgraduate Award scholarship. MIM Exploration and Minera Alumbrera are thanked for financial and logistical support and access to the Farallón Negro district. Mario Alderete from Yacimientos Mineros Agua de Dionisio (YMAD) is also thanked for granting initial access. The first author would like to thank the RSES for access to the ELA-ICP-MS and mineral separation facilities. SEM images were obtained with the help of Graeme Auchterlonie from the Centre for Microscopy and Microanalysis, the University of Queensland. Thanks are also due to Rick Valenta, Steve Brown, John Proffett, Jim Dunlap, Ron Berry, Sue Keay, and David Keough and the many others who have been involved with the project. We thank Noel White for his insightful and thorough reviews of the manuscript resulting in substantial improvements. Richard Tosdal, Richard Goldfarb, Jeremy Richards and one other anonymous reviewer are acknowledged for their constructive comments that helped refine the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Harris.

Additional information

Editorial handling: N. White

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, A.C., Allen, C.M., Bryan, S.E. et al. ELA-ICP-MS U–Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for porphyry-related mineralization. Miner Deposita 39, 46–67 (2004). https://doi.org/10.1007/s00126-003-0381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-003-0381-0

Keywords

Navigation