Skip to main content
Log in

Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Wittichen Co–Ag–Bi–U mining area (Schwarzwald ore district, SW Germany) hosts several unconformity-related vein-type mineralizations within Variscan leucogranite and Permian to Triassic redbeds. The multistage mineralization formed at the intersection of two fault systems in the last 250 Ma. A Permo-Triassic ore stage I with minor U–Bi–quartz–fluorite mineralization is followed by a Jurassic to Cretaceous ore stage II with the main Ag and Co mineralization consisting of several generations of gangue minerals that host the sub-stages of U–Bi, Bi–Ag, Ni–As–Bi and Co–As–Bi. Important ore minerals are native elements, Co and Ni arsenides, and pitchblende; sulphides are absent. The Miocene ore stage III comprises barite with the Cu–Bi sulfosalts emplectite, wittichenite and aikinite, and the sulphides anilite and djurleite besides native Bi, chalcopyrite, sphalerite, galena and tennantite. The mineral-forming fluid system changed from low salinity (<5 wt.% NaCl) at high temperature (around 300°C) in Permian to highly saline (around 25 wt.% NaCl + CaCl2) at lower temperatures (50–150°C) in Triassic to Cretaceous times. Thermodynamic calculations and comparison with similar mineralizations worldwide show that the Mesozoic ore-forming fluid was alkaline with redox conditions above the hematite–magnetite buffer. We suggest that the precipitation mechanism for native elements, pitchblende and arsenides is a decrease in pH during fluid mixing processes. REE patterns in fluorite and the occurrence of Bi in all stages suggest a granitic source of some ore-forming elements, whereas, e.g. Ag, Co and Ni probably have been leached from the redbeds. The greater importance of Cu and isotope data indicates that the Miocene ore stage III is more influenced by fluids from the overlying redbeds and limestones than the earlier mineralization stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed AH, Arai S, Ikenne M (2009) Mineralogy and paragenesis of the Co–Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Econ Geol 104:249–266

    Article  Google Scholar 

  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  • Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids 7:123–147

    Article  Google Scholar 

  • Badham JPN (1975) Mineralogy, paragenesis and origin of the Ag–Ni, Co arsenide mineralisation, Camsell River, N.W.T. Canada. Miner Depos 10:153–175

    Article  Google Scholar 

  • Bagheri H, Moore F, Alderton DHM (2007) Cu–Ni–Co–As (U) mineralization in the Anarak area of central Iran. J Asian Earth Sci 29:651–665

    Article  Google Scholar 

  • Bastin ES (1939) The nickel–cobalt–native silver ore type. Econ Geol 34:1–40

    Article  Google Scholar 

  • Bastrakov EN, Jaireth S, Mernagh TP (2010) Solubility of uranium in hydrothermal fluids at 25° to 300°C. Geosci Austral Rec 2010/29

  • Behr HJ, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany—a study by neutron activation analysis. Chem Geol 61:65–77

    Article  Google Scholar 

  • Bliedtner M, Martin M (1986) Erz- und Minerallagerstätten des Mittleren Schwarzwaldes. LGRB, Freiburg

    Google Scholar 

  • Bons PD (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336:1–17

    Article  Google Scholar 

  • Boyle RW, Dass AS (1971) Origin of the native silver veins at Cobalt, Ontario. Can Mineral 11:414–429

    Google Scholar 

  • Brown AC (2009) A process-based approach to estimating the copper derived from red beds in the sediment-hosted stratiform copper deposit model. Econ Geol 104:857–868

    Article  Google Scholar 

  • Carlé W (1955) Bau und Entwicklung der Südwestdeutschen Großscholle. BH Geol Jb 16

  • Changkakaoti A, Ghosh DK, Krstic D, Gray J, Morton RD (1986) Pb and Sr isotope compositions of hydrothermal minerals from the Great Bear Lake silver deposit, N.S.W., Canada. Econ Geol 81:739–743

    Article  Google Scholar 

  • Cheilletz A, Levresse G, Gasquet D, Azizi-Samir MR, Zyadi R, Archibald DA, Farrar E (2002) The giant Imiter silver deposit: Neoproterozoic epithermal mineralization in the Anti-Atlas, Morocco. Miner Depos 37:772–781

    Article  Google Scholar 

  • Cuney M (1978) Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Econ Geol 73:1567–1610

    Article  Google Scholar 

  • Danisík M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ, Markl G (2010) Tectonothermal history of the Schwarzwald ore district (Germany): an apatite triple dating approach. Chem Geol 278:58–69

    Article  Google Scholar 

  • Dolnícek Z, Fojt B, Prochaska W, Kucera J, Sulovsky P (2009) Origin of the Zálesí U–Ni–Co–As/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner Depo 44:81–97

    Article  Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I: Correlation formulae for phase relations in the temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 X NaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  Google Scholar 

  • En-Naciri A, Barbanson L, Touray JC (1995) Mineralized hydrothermal solution cavities in the Co–As Aït Ahmane mine (Bou Azzer, Morocco). Miner Depos 30:75–77

    Google Scholar 

  • En-Naciri A, Barbanson L, Touray JC (1997) Brine inclusions from the Co–As(Au) Bou Azzer district, Anti-Atlas mountains, Morocco. Econ Geol 92:360–367

    Article  Google Scholar 

  • Essarraj S, Boiron MC, Cathelineau M, Banks DA, Benharref M (2005) Penetration of surface-evaporated brine into the Proterozoic basement and deposition of Co and Ag at Bou Azzer (Morocco): evidence from fluid inclusions. J Afr Earth Sci 41:25–39

    Article  Google Scholar 

  • Everhart DL, Wright RJ (1953) The geologic character of typical pitchblende veins. Econ Geol 48:77–96

    Article  Google Scholar 

  • Falkenstein F (2001) Ganz schön bunt, der Buntsandstein in der Umgebung von Waldshut am südöstlichen Schwarzwaldrand. Aufschluss 52:227–241

    Google Scholar 

  • Frank M (1952) Die Alpirsbacher und Reinerzauer Erzgänge im Württembergischen Schwarzwald. Württemb JB Stat Landesk 117–150

  • Franzke HJ, Werner W (1994) Wie beeinflußte die Tektonik des Kristallins und des Rheingrabens die hydrothermalen Gangstrukturen des Schwarzwaldes? Abh Geol LA Ba-Wü 14:99–118

    Google Scholar 

  • Fritsche R (1980) Ergebnisse der Uranprospektion im historischen Bergbaurevier von Wittichen (Mittlerer Scharzwald). Ber Naturf Gesell Freiburg 70:19–28

    Google Scholar 

  • Fritsche R, Föhse H (1981) Uranprospektion im Triberger Granit. Aufschluss 32:369–377

    Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1998) Geologic model of the magmatic–hydrothermal system of Vulcano (Aeolian Islands, Italy). Mineral Petrol 62:195–222

    Article  Google Scholar 

  • Furnival GM (1939) A silver–pitchblende deposit at Contact Lake, Great Bear Lake area, Canada. Econ Geol 34:739–776

    Article  Google Scholar 

  • Geyer OF, Gwinner MP (1986) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart

    Google Scholar 

  • Halse E (1924) Cobalt ores. John Murray, London

    Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn, and Rb. Geochim Cosmochim Acta 44:1519–1533

    Article  Google Scholar 

  • Hofmann B (1980) Blei-, Zink-, Kupfer- und Arsenvererzungen im Wellengebirge (unterer Muschelkalk, Trias) am südlichen und östlichen Schwarzwaldrand. Mitt Naturf Gesell Schaffhausen 31:157–196

    Google Scholar 

  • Hofmann B, Eikenberg J (1991) The Krunkelbach Uranium Deposit, Schwarzwald, Germany: correlation of radiometric ages (U–Pb, U–Xe–Kr, K–Ar, 230Th–234U) with mineralogical stages and fluid inclusions. Econ Geol 86:1031–1049

    Article  Google Scholar 

  • Hohl JL (1994) Minéraux et mines du massif vosgien. Edition du Rhine, Mulhouse

    Google Scholar 

  • Huck KH (1984) Die Beziehungen zwischen Tektonik und Paragenese unter Berücksichtigung geochemischer Kriterien in der Fluß- und Schwerspatlagerstätte “Clara” bei OberwolfachSchwarzwald. Dissertation, University of Heidelberg

  • Hunziger JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasse K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180

    Article  Google Scholar 

  • Ineson PR, Mitchell JG, Vokes FM (1975) K–Ar dating of epigenetic mineral deposits: an investigation of the Permian metallogenic province of the Oslo region, southern Norway. Econ Geol 70:1426–1436

    Article  Google Scholar 

  • Jacob DE (2006) High sensitivity analysis of trace element poor geological reference glasses by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Geostand Geoanal Res 30:221–235

    Article  Google Scholar 

  • Jambor JL (1971a) Gangue mineralogy. Can Mineral 11:232–262

    Google Scholar 

  • Jambor JL (1971b) Wall rock alteration. Can Mineral 11:272–304

    Google Scholar 

  • Jambor JL (1971c) Origin of the silver veins. Can Mineral 11:402–413

    Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12:111–134

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) Supcrt92, a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Kapf F (1785) Beyträge zur Geschichte des Fürstenbergischen Bergbaus im Kinziger Thale. JJ Cramer, Kassel

    Google Scholar 

  • Kaspar P, Rídkosil T, Srein V (1985) Silver-rich minerals from Trebsko near Príbram, Central Bohemia, Czechoslovakia. N Jb Miner Mh 1985:19–28

    Google Scholar 

  • Kirchheimer F (1951) Die Uranerzvorkommen im Mittleren Schwarzwald. Mb bad geol LA 1–47

  • Kirchheimer F (1953) Weitere Untersuchungen über das Vorkommen von Uran im Schwarzwald. Abh Geol LA Ba-Wü 1:1–60

    Google Scholar 

  • Kirchheimer F (1957) Bericht über das Vorkommen von Uran in Baden-Württemberg. Abh Geol LA Ba-Wü 2:1–127

    Google Scholar 

  • Kissin SA (1992) Five-element (Ni–Co–As–Ag–Bi) veins. Geosci Can 19:113–124

    Google Scholar 

  • Kluth C (1965) Über das Vorkommen des Coffinits im mittleren Schwarzwald. Jh geol LA Ba-Wü 7:45–53

    Google Scholar 

  • Kríbek B, Zák K, Spangenberg J, Jehlicka J, Prokes S, Komínek J (1999) Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Príbram, Czech Republic: sources, radiation-induced alteration, and relation to mineralization. Econ Geol 94:1093–1114

    Article  Google Scholar 

  • Krieger P (1935) Primary silver mineralization at Sabinal, Chihuahua, Mexico. Econ Geol 30:242–259

    Article  Google Scholar 

  • Leibiger H (1955) Beiträge zur Methodik der Gehaltsbestimmungen von Uran und Blei in Uranpecherzen zum Zweck der Altersbestimmung und Beiträge zur analytischen Chemie des Urans im allgemeinen. Dissertation, University of Freiburg

  • Levin P (1975) Über eine gangförmige Vererzung bei Schriesheim im südwestlichen Odenwald. Aufschluss 27:255–262

    Google Scholar 

  • Lipp U (2003) Wismut-, Kobalt-, Nickel- und Silbererze im Nordteil des Schneeberger Lagerstättenbezirkes. Bergb Sachsen 10:1–210

    Google Scholar 

  • List KA, Wutzler B (1974) Über das Uranerzvorkommen im Stammelbach bei Schiltach/Schwarzwald. Jh Geol LA Ba-Wü 16:7–11

    Google Scholar 

  • Lorilleux G, Jébrak M, Cuney M, Baudemont D (2002) Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada): from fractal analysis to structural significance. J Struct Geol 24:323–338

    Article  Google Scholar 

  • Lüders V (1994) Geochemische Untersuchungen an Gangartmineralen aus dem Bergbaurevier Freiamt-Sexau und dem Badenweiler Quarzriff (Schwarzwald). Abh Geol LA Ba-Wü 14:173–190

    Google Scholar 

  • Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur J Mineral 4:1053–1068

    Google Scholar 

  • Luz AJE (2003) Geologische Kartierung, geochemische und strukturgeologische Untersuchungen in der Grube Segen Gottes und in ihrem Umfeld, Haslach-Schnellingen im Kinzigtal. Diploma thesis, University of Freiburg

  • Markl G (2005) Bergbau und Mineralienhandel im fürstenbergischen Kinzigtal. Markstein, Filderstadt

    Google Scholar 

  • Markl G, Lorenz S (2004) Silber Kupfer Kobalt Bergbau im Schwarzwald. Markstein, Filderstadt

    Google Scholar 

  • Markl G, Slotta C (2011) Die Uranmineralien des Lagerstättenreviers Wittichen im mittleren Schwarzwald. Lapis 36(3):25–37

    Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006a) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Article  Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006b) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228

    Article  Google Scholar 

  • Marshall DD, Watkinson DH (2000) The Cobalt mining district: silver sources, transport and deposition. Explor Min Geol 2:81–90

    Article  Google Scholar 

  • Marshall DD, Diamond LW, Skippen GB (1993) Silver transport and deposition at Cobalt, Ontario, Canada: fluid inclusion evidence. Econ Geol 88:837–854

    Article  Google Scholar 

  • Martin M (2009) Geogene Grundgehalte (Hintergrundwerte) in den petrogeochemischen Einheiten von Baden-Württemberg. LGRB-Inf 24:1–98

    Google Scholar 

  • Martin JT, Lowell RP (1998) Precipitation of quartz during high-temperature, fracture-controlled hydrothermal upflow at ocean ridges: equilibrium versus linear kinetics. J Geophys Res 105:869–882

    Article  Google Scholar 

  • Martin M, Markl G (1991) Die Grube Hilfe Gottes im Stammelbach bei Schiltach, Mittlerer Schwarzwald. Jh geol LA Ba-Wü 33:287–295

    Google Scholar 

  • Martin M, Roschlaub R (1993) Historischer Bergbau auf der Gemarkung Niedereschach. Almanach 17:143–155

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes. Rev Miner Geochem 21:169–200

    Google Scholar 

  • Mehnert KR (1949) Die Kupfer-Wismut Lagerstätte "Daniel" bei Wittichen (mittl. Schwarzwald). N Jb Mineral Geol Palaeon 10:217–260

    Google Scholar 

  • Meisl S (1975) Uranmineralisationen und begleitende Erzparagenesen im Odenwald. Aufschluss 27:245–248

    Google Scholar 

  • Meshik AP, Lippolt HJ, Dymkov YM (2000) Xenon geochronology of Schwarzwald pitchblendes. Miner Depos 35:190–205

    Article  Google Scholar 

  • Metcalfe R, Rochelle CA, Savage D, Higgo JW (1994) Fluid–rock interactions during continental red bed diagenesis: implications for theoretical models of mineralization in sedimentary basins. Geol Soc Spec Publ 78:301–324

    Article  Google Scholar 

  • Metz R (1952) Gesteine und Erzgänge des Heubachtales im mittleren Schwarzwald. Dissertation, University of Freiburg

  • Metz R (1955) Der Silber–Kobaltbergbau im Wittichener Revier und die Kinzigtäler Blaufarbenwerke. Alemann Jb 3:224–262

    Google Scholar 

  • Metz R, Richter M, Schürenberg H (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes. Geol Jb 29, Bh

  • Möller P, Maus H, Gundlach H (1982) Die Entwicklung von Flußspatmineralisationen im Bereich des Schwarzwaldes. Jh Geol LA Ba-Wü 24:35–70

    Google Scholar 

  • Morimoto N, Koto K (1970) Phase relations of the Cu–S system at low temperatures: stability of anilite. Am Mineral 55:106–117

    Google Scholar 

  • Nielsen H (1968) Schwefel-Isotopenverhältnisse aus St. Andreasberg und anderen Erzvorkommen des Harzes. N Jb Miner Abh 109:289–321

    Google Scholar 

  • Ondrus P, Vavrín I, Skála R, Veselovsky F (2001) Low-temperature Ni-rich löllingite from Háje, Príbram, Czech Republic. Rietveld crystal structure refinement. N Jb Miner Mh 2001:169–185

    Google Scholar 

  • Ondrus P, Veselovsky F, Gabasová A, Hlousek J, Srein V (2003a) Geology and hydrothermal vein system of the Jáchymov (Joachimsthal) ore district. J Czech Geol Soc 48:3–18

    Google Scholar 

  • Ondrus P, Veselovsky F, Gabasová A, Hlousek J, Srein V, Vavrín I, Skála R, Sejkora J, Drábek M (2003b) Primary minerals of the Jáchymov ore district. J Czech Geol Soc 48:19–147

    Google Scholar 

  • Ondrus P, Veselovsky F, Gabasová A, Drábek M, Dobes P, Maly K, Hlousek J, Sejkora J (2003c) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48:157–192

    Google Scholar 

  • Oppenländer FWH (1992) Zur Mineralogie des “Roten Löwen” in Wittichen (Mittlerer Schwarzwald). Aufschluss 43:119–128

    Google Scholar 

  • Pankratz LB, Mah AD, Watson SW (1987) Thermodynamic properties of sulfides. US Bureau Min Bull, p 689

  • Petruk W (1971a) General characteristics of the deposits. Can Mineral 11:76–107

    Google Scholar 

  • Petruk W (1971b) Mineralogical characteristics of the deposits and textures of the ore minerals. Can Mineral 11:108–139

    Google Scholar 

  • Pfaff K, Romer RL, Markl G (2009) Mineralization history of the Schwarzwald ore district: U–Pb ages of ferberite, agate, and pitchblende. Eur J Mineral 21:817–836

    Article  Google Scholar 

  • Pfaff K, Hildebrandt LH, Leach DL, Jacob DE, Markl G (2010) Formation of the Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Miner Depo 45:647–666

    Article  Google Scholar 

  • Pfaff K, Koenig A, Ridley I, Wenzel T, Adams D, Hildebrandt LH, Leach DL, Markl G (2011) Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: incorporation mechanisms and implications for their genesis. Chem Geol. doi:10.1016/j.chemgeo.2011.04.018

  • Pokrovski G, Gout R, Schott J, Zotov A, Harrichoury JC (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 60:737–749

    Article  Google Scholar 

  • Ramdohr P (1975) Der Silberkobalterzgang mit Kupfererzen vom Wingertsberg bei Nieder-Ramstadt im Odenwald. Aufschluss 27:237–243

    Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bulletin 2131

  • Robinson BW, Ohmoto H (1973) Mineralogy, fluid inclusions, and stable isotopes of the Echo Bay U–Ni–Ag–Cu deposits, Northwest Territories, Canada. Econ Geol 68:635–656

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Rev Mineral Geochem 12:1–644

    Google Scholar 

  • Rose AW, Bianchi-Mosquera GC (1993) Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on goethite and hematite: a control on metal mobilization from red beds into stratiform copper deposits. Econ Geol 88:1226–1236

    Article  Google Scholar 

  • Rupf I, Nitsch E (2008) Das geologische Landesmodell von Baden-Württemberg: Datengrundlage, technische Umsetzung und erste geologische Ergebnisse. LGRB Inf 21

  • Ruzicka V (1993) Vein uranium deposits. Ore Geol Rev 8:247–276

    Article  Google Scholar 

  • Sandberger F (1868) Untersuchungen über die Erzgänge von Wittichen im badischen Schwarzwalde. N Jb Mineral 385–432

  • Sandberger F (1869) Nachtrag zu den Untersuchungen über die Erzgänge von Wittichen. N Jb Mineral 205–208

  • Sandberger F (1882) Untersuchungen über Erzgänge. Heft 1. Kreidels, Wiesbaden

  • Sandberger F (1885) Untersuchungen über Erzgänge. Heft 2. Kreidels, Wiesbaden

  • Schädel K (1955) Neue Untersuchungen im alten Bergbaugebiet von Alpirsbach und Reinerzau (Schwarzwald). Jh Geol LA Ba-Wü 1:37–60

    Google Scholar 

  • Schatz RH (2010) Beiträge zur Mineralogie und Paläontologie von Baden und der Schweiz 1967–2010. Self-publishing

  • Schleicher H (1994) Collision-type granitic melts in the context of the thrust tectonics and uplift history (Triberg Granite Complex, Schwarzwald, Germany). N Jb Mineral Abh 166:211–237

    Google Scholar 

  • Schnorrer-Köhler G (1983) Das Silbererzrevier St. Andreasberg im Harz. Aufschluss 34:153–175

    Google Scholar 

  • Schürenberg H (1963) Über iranische Kupfererzvorkommen mit komplexen Kobalt-Nickelerzen. N Jb Miner Abh 99:200–230

    Google Scholar 

  • Schwinn G, Markl G (2005) REE systematics in hydrothermal fluorite. Chem Geol 216:225–248

    Article  Google Scholar 

  • Schwinn G, Wagner T, Baatartsogt B, Markl G (2006) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 70:965–982

    Article  Google Scholar 

  • Scott SD, O’Connor TP (1971) Fluid inclusions in vein quartz, Silverfield mine, Cobalt, Ontario. Can Mineral 11:263–271

    Google Scholar 

  • Shin D, Park HI, Lee I, Lee KS, Hwang J (2004) Hydrothermal As–Bi mineralization in the Nakdong deposits, South Korea: insights from fluid inclusions and stable isotopes. Can Mineral 42:1465–1481

    Article  Google Scholar 

  • Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geological fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950

    Article  Google Scholar 

  • Shvarov YV, Bastrakov E (1999) HCh: a software package for geochemical equilibrium modeling. Record 1999/25, Austral Geol Surv Organ, Canberra

  • Skirrow RG, Jaireth S, Huston DL, Bastrakov EN, Schofield A, van der Wielen SE, Barnicoat AC (2009) Uranium mineral systems: processes, exploration criteria and a new deposit framework. Geosci Austral Rec 2009/20

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, Southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Mineral 45:1147–1176

    Article  Google Scholar 

  • Staude S, Bons PD, Markl G (2009) Hydrothermal vein formation by extension-driven dewatering of the middle crust: an example from SW Germany. Earth Planet Sci Lett 286:387–395

    Article  Google Scholar 

  • Staude S, Mordhorst T, Neumann R, Prebeck W, Markl G (2010a) Compositional variation of the tennantite–tetrahedrite solid-solution series in the Schwarzwald ore district (SW Germany): the role of mineralizing processes and fluid source. Mineral Mag 74:309–338

    Article  Google Scholar 

  • Staude S, Dorn A, Pfaff K, Markl G (2010b) Assemblages of Ag–Bi sulfosalts and conditions of their formation: the type locality of schapbachite (Ag0.4Pb0.2Bi0.4S) and neighboring mines in the Schwarzwald ore district, southern Germany. Can Mineral 48:448–467

    Article  Google Scholar 

  • Staude S, Göb S, Pfaff K, Ströbele F, Premo WR, Markl G (2011) Deciphering fluid sources of hydrothermal systems: a combined Sr- and S-isotope study on barite (Schwarzwald, SW Germany). Chem Geol. doi:10.1016/j.chemgeo.2011.04.009

  • Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61:1359–1412

    Article  Google Scholar 

  • Tarkian M, Bock WD, Neumann M (1983) Geology and mineralogy of the Cu–Ni–Co–U ore deposit at Talmessi and Meskani, Central Iran. Tschermaks Min Petr Mitt 32:111–133

    Article  Google Scholar 

  • Thorpe R (1974) Lead isotope evidence on the genesis of the silver–arsenide vein deposits of the Cobalt and Great Bear Lake areas, Canada. Econ Geol 69:777–791

    Article  Google Scholar 

  • Todt W (1976) Zirkon–U/Pb-Alter des Malsburger Granits vom Süd-Schwarzwald. N Jb Mineral Mh 12:532–544

    Google Scholar 

  • Villinger E, Zedler H (2006) Geologische Karte des Schwarzwalds 1: 150000. LGRB, Freiburg

    Google Scholar 

  • Vogelgesang WM (1865) Geognostisch-bergmännische Beschreibung des Kinzigthaler Bergbaues. Beitr Statist Inn Verwalt Großherzogt Baden 21

  • Wagner T, Lorenz J (2002) Mineralogy of complex Co–Ni–Bi vein mineralization, Bieber deposit, Spessart, Germany. Miner Mag 66:385–407

    Article  Google Scholar 

  • Walenta K (1987) Wittichen. Lapis 12–7(8):13–55

    Google Scholar 

  • Walenta K (1992) Die Mineralien des Schwarzwaldes und ihre Fundstellen. Weise, München

    Google Scholar 

  • Werchau A, Schleicher H, Kramm U (1989) Erste Altersbestimmungen an Monaziten des Schwarzwaldes. Europ J Mineral Bh 1:1–198

    Google Scholar 

  • Werner W (2006) Erzprospektion im Revier Wittichen in der Zeit zwischen 1935 und 1979—Ergebnisse und lagerstättengeologische Schlussfolgerungen. Erzgräber 20:1–64

    Google Scholar 

  • Werner W, Dennert V (2004) Lagerstätten und Bergbau im Schwarzwald. LGRB, Freiburg

    Google Scholar 

  • Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Z dt geol Ges 152:405–437

    Google Scholar 

  • Werner W, Franzke HJ, Wirsing G, Jochum J, Lüders V, Wittenbrink J (2002) Die Erzlagerstätte Schauinsland bei Freiburg im Breisgau. Ber Naturf Gesell Freiburg 92:1–110

    Google Scholar 

  • Wernicke RS, Lippolt HJ (1997) (U + Th)–He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany. Chem Geol 138:273–285

    Article  Google Scholar 

  • Wilke A (1952) Die Erzgänge von St. Andreasberg im Rahmen des Mittelharz-Ganggebietes. Beih Geol Jb 7:1–228

    Google Scholar 

  • Wilkerson G, Deng Q, Llavona R, Goodell P (1988) Batopilas mining district, Chihuahua, Mexico. Econ Geol 83:1721–1736

    Article  Google Scholar 

  • Wolf H (1942) Die Gesteine und Erzgänge der Umgebung von Wittichen im mittleren Schwarzwald. N Jb Mineral Geol Paläon 77:175–237

    Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij BV, Den Haag

    Google Scholar 

Download references

Acknowledgements

Some samples were provided from the University collections of Heidelberg (Germany) and Würzburg (Germany), from Julian Gruber (Schenkenzell-Vortal) and Norbert Kindler (Freiburg). These are gratefully acknowledged. Help during fluid inclusion analyses of Jan-Erik Gühring and Dominik Köhler is gratefully acknowledged. We thank Manfred Martin (Freiburg, Germany) and Heinrich Taubald for RFA analyses, Christoph Berthold for Micro-XRD analyses, and Helene Brätz (Würzburg, now Erlangen, Germany) and Antje Huttenlocher (Mainz) for laser ablation–ICP-MS analyses. Thomas Wenzel is thanked for his help with the electron microprobe, Udo Neumann for discussions about ore textures and Paul Bons for discussions about breccias. We acknowledge insightful hints of and discussions with Katharina Pfaff, Julian Schilling, Florian Ströbele, Kai Hettmann, Susanne Göb and Anselm Loges. We are grateful to Martin Herrmann (Schapbach) for providing access to the old mines. We gratefully acknowledge the editorial work and the suggestions and comments of Prof. Bernd Lehmann (Clausthal, Germany) and Prof. Michel Cuney (Nancy, France) and the comments by two anonymous reviewers, which improved the manuscript considerably. This study was supported by the prize for young University Teachers of the Alfried-Krupp foundation to Gregor Markl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Markl.

Additional information

Editorial handling: M. Cuney

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 219 kb)

ESM 2

(XLS 66 kb)

(EPS 1394 kb)

(EPS 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staude, S., Werner, W., Mordhorst, T. et al. Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Miner Deposita 47, 251–276 (2012). https://doi.org/10.1007/s00126-011-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0365-4

Keywords

Navigation