Skip to main content
Log in

Vein graphite deposits: geological settings, origin, and economic significance

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Graphite deposits result from the metamorphism of sedimentary rocks rich in carbonaceous matter or from precipitation from carbon-bearing fluids (or melts). The latter process forms vein deposits which are structurally controlled and usually occur in granulites or igneous rocks. The origin of carbon, the mechanisms of transport, and the factors controlling graphite deposition are discussed in relation to their geological settings. Carbon in granulite-hosted graphite veins derives from sublithospheric sources or from decarbonation reactions of carbonate-bearing lithologies, and it is transported mainly in CO2-rich fluids from which it can precipitate. Graphite precipitation can occur by cooling, water removal by retrograde hydration reactions, or reduction when the CO2-rich fluid passes through relatively low-fO2 rocks. In igneous settings, carbon is derived from assimilation of crustal materials rich in organic matter, which causes immiscibility and the formation of carbon-rich fluids or melts. Carbon in these igneous-hosted deposits is transported as CO2 and/or CH4 and eventually precipitates as graphite by cooling and/or by hydration reactions affecting the host rock. Independently of the geological setting, vein graphite is characterized by its high purity and crystallinity, which are required for applications in advanced technologies. In addition, recent discovery of highly crystalline graphite precipitation from carbon-bearing fluids at moderate temperatures in vein deposits might provide an alternative method for the manufacture of synthetic graphite suitable for these new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acharya BC, Dash B (1984) Graphite in Eastern Ghats Precambrian migmatites, Orissa, India. Trans R Soc Edinb Earth Sci 75:391–406

    Article  Google Scholar 

  • Acharya BC, Rao DS (1998) Graphite in Eastern Ghat complex of Orissa. Geol Survey India Spec Publ 44:190–200

    Google Scholar 

  • Baiju KR, Nambiar CG, Jadhav GN, Kagi H, Satish-Kumar M (2009) Low-density CO2-rich fluid inclusions from charnockites of southwestern Madurai Granulite Block, southern India; implications on graphite mineralization. J Asian Earth Sci 8:332–340

    Article  Google Scholar 

  • Balan A, Kumar R, Boukhicha M, Beyssac O, Bouillard J-C, Taverna D, Sacks W, Marangolo M, Lacaze E, Gohler R, Escoffier W, Poumirol J-M, Shukla A (2010) Anodic bonded graphene. J Phys D Appl Phys 43:374013

    Article  Google Scholar 

  • Balasooriya NWB, Touzain P, Baranayake WSK (2007) Capacity improvement of mechanically and chemically treated Sri Lanka natural graphite as an anode material in Li-ion batteries. Ionics 13:305–309

    Article  Google Scholar 

  • Barrenechea JF, Luque FJ, Millward D, Ortega L, Beyssac O, Rodas M (2009) Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data. Contrib Mineral Petrol 158:37–51

    Article  Google Scholar 

  • Bastin ES (1912) The graphite deposits of Ceylon. A review of present knowledge with a description of a similar graphite deposit near Dillon, Montana. Econ Geol 7:449–473

    Article  Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud J-N (2002) Raman spectra of carbonaceous materials in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  Google Scholar 

  • Binu-Lal SS, Kehelpannala KW, Satish-Kumar M, Wada H (2003) Multistage graphite precipitation through protracted fluid flow in sheared metagranitoid, Digana, Sri Lanka: evidence from stable isotopes. Chem Geol 197:253–270

    Article  Google Scholar 

  • Cameron EN, Weis L (1960) Strategic graphite: a survey. Geol Surv Bull 1082-E:201–321

    Google Scholar 

  • Cesare B (1995) Graphite precipitation in C-O-H fluid inclusions: closed-system compositional and density changes, and thermobarometric implications. Contrib Mineral Petrol 122:25–33

    Article  Google Scholar 

  • Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129–140

    Article  Google Scholar 

  • Chukhrov F, Ermilova L, Hosik L (1984) On the isotopic composition of carbon in epigenetic graphites. In: Wauschkuhn A et al (eds) Syngenesis and Epigenesis in the Formation of Mineral Deposits. Springer-Verlag, Berlin-Heidelberg, pp 130–137

    Chapter  Google Scholar 

  • Crespo E, Luque FJ, Rodas M (2003) Alteración de la cristalinidad del grafito por cizalla simple: comparación entre procesos experimentales y naturales. Bol Soc Española Min 26:137–153

    Google Scholar 

  • Crespo E, Luque J, Fernández-Rodríguez C, Rodas M, Díaz-Azpiroz M, Fernández-Caliani JC, Barrenechea JF (2004) Significance of graphite occurrences in the Aracena Metamorphic Belt, Iberian Massif. Geol Mag 141:687–697

    Article  Google Scholar 

  • Crespo E, Luque FJ, Barrenechea JF, Rodas M (2005) Mechanical graphite transport in fault zones and the formation of graphite veins. Mineral Mag 69:463–470

    Article  Google Scholar 

  • Crespo E, Luque FJ, Rodas M, Wada H, Gervilla F (2006a) Graphite-sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks. Gondwana Res 9:279–290

    Article  Google Scholar 

  • Crespo E, Luque FJ, Barrenechea JF, Rodas M (2006b) Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation. Mineral Mag 70:697–707

    Article  Google Scholar 

  • Crossley P (2000) Graphite: High-tech supply sharpens up. Industrial Minerals 398:31–47

    Google Scholar 

  • Dinalankara DMSK, Dissanayake CB (1988) The geological setting of some major graphite deposits of Sri Lanka. J Geol Soc Sri Lanka 1:18–25

    Google Scholar 

  • Dissanayake CB (1981) The origin of graphite of Sri Lanka. Org Geochem 3:1–7

    Article  Google Scholar 

  • Dissanayake CB (1986) The origin of vein graphite of Sri Lanka: biogenic or abiogenic? L.J.D. Fernando Felicitation Volume, Geol Soc Sri Lanka, Spec Publ:131–140

  • Dissanayake CB (1994) Origin of vein graphite in high-grade metamorphic terrains. Role of organic matter and sediment subduction. Miner Deposita 29:57–67

    Article  Google Scholar 

  • Dissanayake CB, Chandrajith R (1999) Sri Lanka-Madagascar Gondwana linkage: Evidence for a Pan-African mineral belt. J Geophys Res 10:223–235

    Google Scholar 

  • Dobner A, Graf W, Hahn-Weinheimer P, Hirner A (1978) Stable carbon isotopes of graphite from Bogala mine, Sri Lanka. Lithos 11:251–255

    Article  Google Scholar 

  • Duke EF, Galbreath KC, Trusty KJ (1990) Fluid inclusion and carbon isotope studies of quartz-graphite veins, Black Hills, South Dakota, and Ruby Range, Montana. Geochim Cosmochim Acta 54:683–698

    Article  Google Scholar 

  • El Atrassi F, Brunet F, Bouybaouene M, Chopin C, Chazot G (2011) Melting textures and microdiamonds preserved in graphite pseudomorphs from the Beni Bousera peridotite massif, Morocco. Eur J Mineral 23:157–168

    Article  Google Scholar 

  • Erdosh G (1970) Geology of Bogala mine, Ceylon and the origin of vein-type graphite. Mineral Deposita 5:375–382

    Article  Google Scholar 

  • Erdosh G (1972) Abiotic carbon and the formation of graphite deposits: Discussion. Econ Geol 67:383–384

    Article  Google Scholar 

  • Farquhar J, Chacko T (1991) Isotopic evidence for involvement of CO2-bearing magmas in granulite formation. Nature 354:60–63

    Article  Google Scholar 

  • Ford RB (1954) Occurrence and origin of the graphite deposits near Dillon, Montana. Econ Geol 49:31–43

    Article  Google Scholar 

  • Glassley W (1982) Fluid evolution and graphite genesis in the deep continental crust. Nature 295:229–231

    Article  Google Scholar 

  • Hahn-Weinheimer P, Hirner A (1981) Isotopic evidence for the origin of graphite. Geophys J Roy Astron Soc 15:9–15

    Google Scholar 

  • Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindrakumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka. Contrib Mineral Petrol 96:225–244

    Article  Google Scholar 

  • Hapuarachchi DJAC (1977) Decarbonation reactions and the origin of vein-graphite in Sri Lanka. J Nat Sci Council Sri Lanka 5:29–32

    Google Scholar 

  • Hoernes S, Fiorentini E, Hoffbauer R (1994) The role of fluids in granulite-facies metamorphism as deduced from oxygen and carbon isotopic compositions. Precambrian Res 66:183–198

    Article  Google Scholar 

  • Huizenga JM (2011) Thermodynamic modelling of a cooling C-O-H fluid-graphite system: implications for hydrothermal graphite precipitation. Mineral Deposita 46:23–33

    Article  Google Scholar 

  • Huizenga JM, Touret JLR (2012) Granulites, CO2 and graphite. Gondwana Res 22:799–809

    Article  Google Scholar 

  • Jackson DH, Mattey D, Harris NBW (1988) Carbon isotope compositions of fluid inclusions in charnockites from southern India. Nature 333:167–170

    Article  Google Scholar 

  • Jaszczak JA, Trinchillo D (2013) Miracle at Merelani: a remarkable occurrence of graphite, diopside, and associated minerals. Rocks & Minerals 88:154–165

    Article  Google Scholar 

  • Katz MB (1987) Graphite deposits from Sri Lanka: a consequence of granulite facies metamorphism. Mineral Deposita 22:18–25

    Article  Google Scholar 

  • Kehelpannala KW (1999) Epigenetic vein graphite mineralization in the granulite terrain of Sri Lanka. Gondwana Res 2:654–657

    Article  Google Scholar 

  • Kehelpannala KW, Francis MDL (2001) Vein graphite deposits of the Kegalle District, Sri Lanka: further evidence for post-metamorphic, fluid-deposited graphite. Gondwana Res 4:655–656

    Article  Google Scholar 

  • Krishna Rao JSR, Malleswara Rao P (1965) Occurrence and origin of graphite in parts of Eastern Ghats, South India. Econ Geol 60:1046–1051

    Article  Google Scholar 

  • Kröner A, Williams IS (1993) Age of metamorphism in the high-grade rocks of Sri Lanka. J Geophys Res 101:513–521

    Google Scholar 

  • Kumarasinghe AR, Samaranayake L, Bondino F, Magnano E, Kottegoda N, Carlino E, Ratnayake UN, de Alwis AAP, Karunaratne V, Amaratunga GAJ (2013) Self-assembled multilayer graphene oxide membrane and carbon nanotubes synthesized using a rare form of natural graphite. J Phys Chem C 117:9507–9519

    Article  Google Scholar 

  • Kwiecinska B, Petersen HI (2004) Graphite, semi-graphite, natural coke, and natural char classification-ICCP system. Internat J Coal Geol 57:99–116

    Article  Google Scholar 

  • Lamb W, Valley JW (1984) Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312:56–58

    Article  Google Scholar 

  • Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Mineral Deposita 36:490–502

    Article  Google Scholar 

  • Luque FJ, Rodas M, Galán E (1992) Graphite vein mineralization in the ultramafic rocks of southern Spain: Mineralogy and genetic relationships. Mineral Deposita 27:226–233

    Article  Google Scholar 

  • Luque FJ, Pasteris JD, Wopenka B, Rodas M, Barrenechea JF (1998) Natural fluid deposited graphite: mineralogical characteristics and mechanisms of formation. Am J Sci 298:471–498

    Article  Google Scholar 

  • Luque FJ, Rodas M (1999) Constraints on graphite crystallinity in some Spanish fluid-deposited occurrences from different geologic settings. Mineral Deposita 34:215–219

    Article  Google Scholar 

  • Luque FJ, Ortega L, Barrenechea JF, Millward D, Beyssac O, Huizenga J-M (2009) Deposition of highly crystalline graphite from moderate-temperature fluids. Geology 37:275–278

    Article  Google Scholar 

  • Luque FJ, Ortega L, Barrenechea JF, Huizenga JM, Millward D (2012a) Key factors controlling massive graphite deposition in volcanic settings: an example of a self-organized critical system. J Geol Soc Lond 169:269–277

    Article  Google Scholar 

  • Luque FJ, Crespo-Feo E, Barrenechea JF, Ortega L (2012b) Carbon isotopes of graphite: implications on fluid history. Geosci Front 3:197–207

    Article  Google Scholar 

  • Matsuura Y, Kehelpannala KW, Wada H (2007) Differential thermal analysis of Sri Lankan type vein graphite. Geosci Reports Shizuoka Univ 34:7–18

    Google Scholar 

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • Mitchell CJ (1993) Industrial Minerals Laboratory Manual: Flake graphite. British Geological Survey Technical Report, WG/92/30, 31 pp

  • Moores S (2010) Concern over battery grade graphite supplies. Industrial Min 509:12

    Google Scholar 

  • Newton RC (1995) Simple-system mineral reactions and high-grade metamorphic fluids. Eur J Mineral 7:861–881

    Google Scholar 

  • Newton RC, Smith J, Windley BF (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288:45–50

    Article  Google Scholar 

  • Olson DW (2011) Graphite. In: U.S. Geological Survey Minerals Yearbook-2009. U.S. Geological Survey, Reston, Virginia, pp 32.1-32.10

  • Ortega L, Millward D, Luque FJ, Barrenechea JF, Beyssac O, Huizenga JM, Rodas M, Clarke SM (2010) The graphite deposit at Borrowdale (UK): a catastrophic mineralizing event associated with Ordovician magmatism. Geochim Cosmochim Acta 74:2429–2449

    Article  Google Scholar 

  • Palyanov YN, Borzdov YM, Khokhryakov AF, Kupriyanov IN, Sobolev N (2006) Sulfide melts-graphite interaction at HPHT conditions: implications for diamond genesis. Earth Planet Sci Lett 250:269–280

    Article  Google Scholar 

  • Pasteris JD (1999) Causes of the uniformly high crystallinity of graphite in large epigenetic deposits. J Metamorph Geol 17:779–787

    Article  Google Scholar 

  • Pearson DG, Davies GR, Nixon H, Mattey D (1991) A carbon isotope study of diamond facies pyroxenites and associated rocks from the Beni Bousera peridotite, North Morocco. J Petrol, Spec Lherzolites Issue:175–189

  • Radhika U, Santosh M (1995) A comparative study of graphite occurrences in South India, Sri Lanka and Madagascar within east Gondwana. In: Yoshida M, Santosh M, Rao AT (eds) India as a fragment of East Gondwana. Gondwana Research Group Memoir-2. Field Science Publishers, Japan, pp 143–157

    Google Scholar 

  • Radhika U, Santosh M (1996) Shear-zone hosted graphite in southern Kerala, India: implications for CO2 infiltration. J Southeast Asian Earth Sci 14:265–273

    Article  Google Scholar 

  • Radhika U, Santosh M, Wada H (1995) Graphite occurrences in southern Kerala: characteristics and genesis. J Geol Soc India 45:653–666

    Google Scholar 

  • Sajeev K, Osanai Y (2004) Ultrahigh-temperature metamorphism (1150°C, 12 kbar) and multi-stage evolution of Mg-Al granulites from Central Highland Complex, Sri Lanka. J Petrol 45:1821–1844

    Article  Google Scholar 

  • Salotti CA, Heinrich EW, Giardini AA (1971) Abiotic carbon and the formation of graphite deposits. Econ Geol 66:929–932

    Article  Google Scholar 

  • Salotti CA, Heinrich EW, Giardini AA (1972) On the origin of vein graphite deposits. Econ Geol 67:384–385

    Article  Google Scholar 

  • Santosh M, Omori S (2008a) CO2 flushing: a plate tectonic perspective. Gondwana Res 13:86–102

    Article  Google Scholar 

  • Santosh M, Omori S (2008b) CO2 windows from mantle to atmosphere: models on ultrahigh-temperature metamorphism and speculations on the link with melting of snowball Earth. Gondwana Res 14:82–96

    Article  Google Scholar 

  • Santosh M, Wada H (1993a) Microscale isotopic zonation in graphite crystals: evidence for channelled CO2 influx in granulites. Earth Planet Sci Lett 119:19–26

    Article  Google Scholar 

  • Santosh M, Wada H (1993b) A carbon isotope study of graphites from the Kerala Khondalite Belt, southern India: evidence for CO2 infiltration in granulites. J Geophys Res 101:643–651

    Google Scholar 

  • Satish-Kumar M (2005) Graphite-bearing CO2-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution. Geochim Cosmochim Acta 69:3841–3856

    Article  Google Scholar 

  • Santosh M, Wada H, Satish-Kumar M, Binu-Lal SS (2003) Carbon isotope “stratigraphy” in a single graphite crystal: Implications for the crystal growth mechanism of fluid-deposited graphite. Am Mineral 88:1689–1696

    Google Scholar 

  • Satish-Kumar M, Santosh M (1998) A petrological and fluid inclusion study of calc-silicate charnockite associations from southern Kerala, India: implications for CO2 influx. Geol Mag 135:27–45

    Article  Google Scholar 

  • Satish-Kumar M, Yurimoto H, Itoh S, Cesare B (2011) Carbon isotope anatomy of a single graphite crystal in a metapelitic migmatite revealed by high-spatial resolution SIMS analysis. Contrib Mineral Petrol 162:821–834

    Article  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  Google Scholar 

  • Selverstone J (2005) Preferential embrittlement of graphitic schists during extensional unroofing in the Alps: the effect of fluid composition on rheology in low-permeability rocks. J Metamorph Geol 23:461–470

    Article  Google Scholar 

  • Silva KKMW (1974) Tectonic control of graphite mineralization in Sri Lanka. Geol Mag 111:307–312

    Article  Google Scholar 

  • Silva KKMW (1987) Mineralization and wall-rock alteration at the Bogala graphite deposit, Bulathkohupitiya, Sri Lanka. Econ Geol 82:1710–1722

    Article  Google Scholar 

  • Sinha RK (1982) Graphite. In: Industrial Minerals. A.A. Balkema, Rotterdam, pp 237–248

  • Soman K, Lobzova R, Sivadas KM (1986) Geology, genetic types, and origin of graphite in South Kerala, India. Econ Geol 81:997–1002

    Article  Google Scholar 

  • Tadokoro H, Tsunogae T, Santosh M, Yoshimura Y (2007) First report of the spinel plus quartz assemblage from Kodaikanal in the Madurai block, southern India: Implications for ultrahigh-temperature metamorphism. Internat Geol Rev 49:1050–1068

    Article  Google Scholar 

  • Tomkins AG, Rebryna KC, Weinberg RF, Schaefer BF (2012) Magmatic sulfide formation by reduction of oxidized arc basalt. J Petrol 53:1537–1567

    Article  Google Scholar 

  • Touret JRL (1971) Le facies granulite en Norvege meridionale. II: Les inclusions fluids. Lithos 4:423–426

    Article  Google Scholar 

  • Touret JLR, Huizenga JM (2011) Fluids in granulites. In: van Reenen DD, Kramers, JD, McCourt S, Perchuk LL (eds) Origin and Evolution of Precambrian High-grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geol Soc Am Mem 207:25–37

  • Touret JLR, Huizenga JM (2012) Fluid-assisted granulite metamorphism: a continental journey. Gondwana Res 21:224–235

    Article  Google Scholar 

  • Touzain P, Balasooriya N, Bandaranayake K, Descolas-Gros C (2010) Vein graphite from the Bogala and Kahatagaha-Kolongaha mines, Sri Lanka: a possible origin. Can Min 48:1373–1384

    Article  Google Scholar 

  • Tsuchiya N, Suzuki S, Chida T (1991) Origin of graphite in the Oshirabetsu gabbroic body, Hokkaido, Japan. J Miner Petrol Econ Geol 86:264–272

    Article  Google Scholar 

  • United States Geological Survey (2012) Graphite. In: Mineral Commodity Summaries 2012. U.S. Geological Survey, Reston, Virginia, pp 68–69

  • Vry J, Brown E, Valley JW, Morrison J (1988) Constraints on granulite genesis from carbon isotope composition of cordierite and graphite. Nature 332:66–68

    Article  Google Scholar 

  • Wada H, Santosh M (1995) Stable isotopic characterization of metamorphic fluid processes in the Kerala Khondalite Belt, South India. Mem Geol Soc India 34:161–172

    Google Scholar 

  • Weis L, Friedman I, Gleason J (1981) The origin of epigenetic graphite: evidence from isotopes. Geochim Cosmochim Acta 45:2325–2332

    Article  Google Scholar 

  • Wilde SA, Dorsett-Bain H, Lennon RG (1999) Geological setting and controls on the development of graphite, sillimanite and phosphate mineralization within the Jiamusi massif: an exotic fragment of Gondwanaland located in north-eastern China? Gondwana Res 2:21–46

    Article  Google Scholar 

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

Download references

Acknowledgments

This paper is a contribution from project CGL2010-16008 of the Spanish Ministry of Economy and Competitivity. The authors acknowledge constructive criticisms of two anonymous referees as well as helpful suggestions by A. Gilg (Associate Editor) and G. Beaudoin (Editor in Chief) that helped to improve the paper. We thank J.L. González (Instituto de Geociencias) for the excellent photographic artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Luque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, F.J., Huizenga, JM., Crespo-Feo, E. et al. Vein graphite deposits: geological settings, origin, and economic significance. Miner Deposita 49, 261–277 (2014). https://doi.org/10.1007/s00126-013-0489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-013-0489-9

Keywords

Navigation