Skip to main content
Log in

Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A total of sixteen composite soil and sediment samples were collected during the rainy and dry season in Asientos, Aguascalientes, Mexico, an area recently affected by increased mining operations. Physicochemical characterization showed that substrates were moderately to strongly calcareous with predominantly neutral to slightly alkaline pH, moderate to high cation-exchange capacity and high organic matter content. Due to these conditions, Cd, Pb, Cu and Zn were not water leachable despite high concentrations; up to 105.3, 7052.8, 414.7 and 12,263.2 mg kg−1 respectively. However, Cd and Pb were considered to be easily mobilizable as they were found predominantly associated with exchangeable and carbonate fractions, whereas Cu and Zn were found associated with Fe/Mn oxide and organic matter fractions. The results highlighted the influence of physicochemical substrate properties on the mobility of metals and its importance during the evaluation of the potential current and future risk metal contamination presents in affected areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta JA, Jansen B, Kalbitz K et al (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324. doi:10.1016/j.chemosphere.2011.07.046

    Article  CAS  Google Scholar 

  • Anju M, Banerjee DK (2010) Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 78:1393–1402. doi:10.1016/j.chemosphere.2009.12.064

    Article  CAS  Google Scholar 

  • APHA-AWWA-WPCF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Arenas-Lago D, Andrade ML, Lago-Vila M et al (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230–231:108–118. doi:10.1016/j.geoderma.2014.04.011

    Article  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2012) Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment. Sci World J 2012:125608. doi:10.1100/2012/125608

    CAS  Google Scholar 

  • Carrillo-González R, Šimůnek J, Sauvé S, Adriano D (2006) Mechanisms and pathways of trace element mobility in soils. Adv Agron 91:111–178. doi:10.1016/S0065-2113(06)91003-7

    Article  Google Scholar 

  • CCME (2015) Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnepeg

    Google Scholar 

  • Clarke LW, Jenerette GD, Bain DJ (2015) Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils. Environ Pollut 197:1–12. doi:10.1016/j.envpol.2014.11.015

    Article  CAS  Google Scholar 

  • EL-Hefnawy ME, Selim EM, Assaad FF et al (2014) The effect of chloride and sulfate ions on the adsorption of Cd2, the effect of chloride and sulfate ions on the adsorption of Cd2. Sci World J 2014:e806252. doi:10.1155/2014/806252

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2006) Guidelines for Soil Description. Food & Agriculture Organisation of the United Nations

  • Fernández Linares LC, Rojas Avelizapa NG, Roldán Carrillo TG, Ramírez Islas ME, Zegarra Martínez HG, Hernández Romeo RU, Reyes Ávila J, Flores Hernández D, Arce Ortega JM (2006) Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo, D.F. Mexico

    Google Scholar 

  • Fijałkowski K, Kacprzak M, Grobelak A, Placek A (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska T. 15(1):81–92

    Google Scholar 

  • Gasparatos D, Mavromati G, Kotsovilis P, Massas I (2015) Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: a residential, agricultural, and industrial area in Greece. Environ Earth Sci 74:1099–1108. doi:10.1007/s12665-015-4096-1

    Article  CAS  Google Scholar 

  • Gutiérrez-Ruiz M, Romero FM, González-Hernández G (2007) Suelos y sedimentos afectados por la dispersión de jales inactivos de sulfuros metálicos en la zona minera de Santa Bárbara, Chihuahua, México. Revista mexicana de ciencias geológicas 24:170–184

    Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001. doi:10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Haydar CM, Nehme N, Awad S et al (2014) Assessing Contamination Level of Heavy Metals in the Lake of Qaraaoun. Lebanon. Phys Procedia 55:285–290. doi:10.1016/j.phpro.2014.07.041

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Jimenez-Lopez JC (2012) Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Sci Total Environ 423:55–61. doi:10.1016/j.scitotenv.2012.02.033

    Article  CAS  Google Scholar 

  • Kottek MJ, Grieser C, Beck B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Lottermoser B (2010) Mine wastes. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Maier RM, Pepper IL (2009) Chapter 4—earth environments. In: Gerba RMMLPP (ed) Environmental microbiology. Academic Press, San Diego, pp 57–82

    Chapter  Google Scholar 

  • Müller G (1979) Heavy metals in the sediment of the Rhine-Changes seity. 1971. Umsch Wiss Tech 79:778–783

    Google Scholar 

  • Nazif W, Marzouk ER, Perveen S (2015) Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater. Sci Total Environ 518–519:310–319. doi:10.1016/j.scitotenv.2015.03.016

    Article  Google Scholar 

  • Neagoe A, Iordache V, Fărcăşanu IC (2012) The role of organic matter in the mobility of metals in contaminated catchments. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Springer, Berlin, pp 297–325

    Chapter  Google Scholar 

  • Ramos-Gómez M, Avelar J, Medel-Reyes A et al (2012) Movilidad De Metales En Jales Procedentes Del Distrito Minero De Guanajuato, México. Revista Internacional de Contaminación Ambiental. http://oai.redalyc.org/articulo.oa?id=37023172005. Accessed 4 Nov 2015

  • Rashid MA (1985) Geochemistry of marine humic compounds. Springer, New York

    Book  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods: Australasia. Csiro Publishing, Clayton

    Google Scholar 

  • Robledo-Santoyo E, Maldonado-Torres R (1997) Manual de Procedimientos para el Analisis de Suelo. Universidad Autónoma de Chapingo, Chapingo

    Google Scholar 

  • Sato JH, de Figueiredo CC, Marchão RL et al (2014) Methods of soil organic carbon determination in Brazilian savannah soils. Sci Agric 71:302–308. doi:10.1590/0103-9016-2013-0306

    Article  Google Scholar 

  • SEMARNAT (2000) NOM-021-SEMARNAT-2000—Que Establece Las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos Estudio, Muestreo y Análisis. Mexico DF

  • SEMARNAT (2006) NMX-AA-132-SCFI-2006—Soil Sampling for Metal and Semimetal Identification and Quantification, and Sample Handling. Mexico DF

  • Servicio Geológico Mexico (2011) Panorama Minero del Estado de Aguascalientes. Servicio Geológicos Mexicano, Pachuca

    Google Scholar 

  • Shaheen SM, Rinklebe J (2014) Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228–229:142–159. doi:10.1016/j.geoderma.2013.10.012

    Article  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253. doi:10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851. doi:10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • USEPA (1992) Preparation of soil sampling protocols: sampling techniques and strategies. U.S. Environmental Protection Agency, Las Vegas

    Google Scholar 

  • USEPA (2007) Flame Atomic Absorption Spectrophotometry (EPA Method 7000B). U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Weiner ER (2012) Applications of environmental aquatic chemistry: a practical guide, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Young S (2011) Dynamics and bioavailability of heavy metals in the rootzone—edited by Magdi Selim, H. Eur J Soil Sci 62:914. doi:10.1111/j.1365-2389.2011.01399.x

    Article  Google Scholar 

  • Zhao S, Feng C, Wang D et al (2013) Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciation. Chemosphere 91:977–984. doi:10.1016/j.chemosphere.2013.02.001

    Article  CAS  Google Scholar 

  • Zheng S, Zhang M (2011) Effect of moisture regime on the redistribution of heavy metals in paddy soil. J Environ Sci 23:434–443. doi:10.1016/S1001-0742(10)60428-7

    Article  CAS  Google Scholar 

  • Zimmerman AJ, Weindorf DC (2010) Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. Int J Anal Chem 2010:387803. doi:10.1155/2010/387803

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Council of Science and Technology (Consejo Nacional de Ciencia y Tecnología), Mexico by means of the research scholarship used for the completion this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Avelar González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, K.N., Ramos Gómez, M.S., Guerrero Barrera, A.L. et al. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico. Bull Environ Contam Toxicol 97, 216–224 (2016). https://doi.org/10.1007/s00128-016-1820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1820-9

Keywords

Navigation