Skip to main content
Log in

Gentherapie in der Orthopädie

Gene therapy in orthopaedic surgery

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Gentherapie in der Orthopädie wird intensiv im Rahmen verschiedener vererbbarer und nichtvererbbarer orthopädischer Krankheiten untersucht. Der experimentelle Fortschritt auf diesem Gebiet ist durch die Komplexität von Vektorauswahl und -herstellung, Gentransfertechnik, Applikationsweg in geeigneten Tier-Modellen sowie dem Nachweis auf struktureller und funktioneller Ebene gekennzeichnet. Die ersten klinischen Studien zur Gentherapie der chronischen Polyarthritis haben bereits ihre praktische Durchführbarkeit demonstriert. Es ist wahrscheinlich, dass genbasierte Verfahren zur Erweiterung und Verbesserung bestehender orthopädisch-chirurgischer Therapien führen werden.

Abstract

Gene therapy in orthopaedic surgery is being intensively studied in the context of different genetic and nonmendelian diseases. Experimental progress in this area is characterized by the complexity of gene vector selection and production, gene transfer technology, application routes, choice of animal models, and evaluation of its efficacy using structural and functional parameters. The first clinical studies for gene therapy of rheumatoid arthritis already demonstrated their practical feasibility. Current data indicate that gene-based therapies are effective in promoting the repair of articular cartilage, and bone defects. Such strategies may lead to the development of novel molecular therapies treatments in orthopaedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Benjamin R, Helman L, Meyers P, Reaman G (2001) A phase I/II dose escalation and activity study of intravenous injections of OCaP1 for subjects with refractory osteosarcoma metastatic to lung. Hum Gene Ther 10 (12): 1591–1593

    Google Scholar 

  2. Boden SD, Hair GA, Viggeswarapu M, Liu Y, Titus L (2000) Gene therapy for spine fusion. Clin Orthop Relat Res 379 [Suppl]: 225–233

  3. Cabrera-Salazar MA, Novelli E, Barranger JA (2002) Gene therapy for the lysosomal storage disorders. Curr Opin Mol Ther 4 (4): 349–358

    PubMed  Google Scholar 

  4. Cucchiarini M, Madry H (2005) Gene therapy for cartilage defects. J Gene Med 7 (12): 1495–1509

    Article  PubMed  Google Scholar 

  5. Cucchiarini M, Madry H, Ma C et al. (2005) Menger MD, Kohn D, Trippel SB, Terwilliger EF. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12 (2): 229–238

    Article  PubMed  Google Scholar 

  6. Cucchiarini M, Thurn T, Weimer A et al. (2007) Restoration of extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor sox9. Arthritis Rheum (in press)

  7. Evans CH, Ghivizzani SC, Herndon JH, Robbins PD (2005) Gene therapy for the treatment of musculoskeletal diseases. J Am Acad Orthop Surg. 13 (4): 230–242

    Google Scholar 

  8. Evans CH, Robbins PD, Ghivizzani SC et al. (2005) Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci U S A 102 (24): 8698–8703

    Article  PubMed  Google Scholar 

  9. Heald A (2006) Clinical trials in inflammatory arthritis. Abstract. In: Proceedings of the 4th International Meeting of Gene Therapy of Arthritis and Related Disorders, Utrechet, Niederlande

  10. Hidaka C, Ibarra C, Hannafin JA et al. (2002) Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng 8 (1): 93–105

    Article  PubMed  Google Scholar 

  11. High K (2002) Gene-based approaches to the treatment of hemophilia. Ann N Y Acad Sci 961: 63–64

    PubMed  Google Scholar 

  12. Ito H, Koefoed M, Tiyapatanaputi P et al. (2005) Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 11 (3): 291–297

    Google Scholar 

  13. Kaul G, Cucchiarini M, Arntzen D et al. (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8 (1): 100–111

    Article  PubMed  Google Scholar 

  14. Lieberman JR, Ghivizzani SC, Evans CH (2002) Gene transfer approaches to the healing of bone and cartilage. Mol Ther 6 (2): 141–147

    Article  PubMed  Google Scholar 

  15. Madry H (2002) Gentransfer in der Kreuzbandchirurgie—Naturwissenschaftliche Grundlagen und klinische Anwendungsmöglichkeiten. Der Orthopäde 31 (8): 799–809

    Google Scholar 

  16. Madry H, Cucchiarini M, Kaul G et al. (2004) Menisci are efficiently transduced by recombinant adeno-associated virus vectors in vitro and in vivo. Am J Sports Med 32 (8): 1860–1865

    Article  PubMed  Google Scholar 

  17. Martinek V, Latterman C, Usas A et al. (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 84-A (7): 1123–1131

  18. Niyibizi C, Smith P, Mi Z et al. (2001) Transfer of proalpha2(I) cDNA into cells of a murine model of human Osteogenesis Imperfecta restores synthesis of type I collagen comprised of alpha1(I) and alpha2(I) heterotrimers in vitro and in vivo. J Cell Biochem 83 (1): 84–91

    Article  PubMed  Google Scholar 

  19. Pascher A, Steinert AF, Palmer GD et al. (2004) Enhanced repair of the anterior cruciate ligament by in situ gene transfer: evaluation in an in vitro model. Mol Ther 10 (2): 327–336

    Article  PubMed  Google Scholar 

Download references

Danksagung

Unterstützt durch die Deutsche Forschungsgemeinschaft (DFG MA 2363/1–1, /1–2, /1–3 und CU 55/1–1, /1–2, /1–3) und die Deutsche Arthrose-Hilfe. Wir danken Frau Anja Weimer für redaktionelle Arbeit am Manuskript.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Madry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madry, H., Kohn, D. & Cucchiarini, M. Gentherapie in der Orthopädie. Orthopäde 35, 1193–1204 (2006). https://doi.org/10.1007/s00132-006-1016-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-1016-9

Schlüsselwörter

Keywords

Navigation