Skip to main content
Log in

Fuzzy logics based on [0,1)-continuous uninorms

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Axiomatizations are presented for fuzzy logics characterized by uninorms continuous on the half-open real unit interval [0,1), generalizing the continuous t-norm based approach of Hájek. Basic uninorm logic BUL is defined and completeness is established with respect to algebras with lattice reduct [0,1] whose monoid operations are uninorms continuous on [0,1). Several extensions of BUL are also introduced. In particular, Cross ratio logic CRL, is shown to be complete with respect to one special uninorm. A Gentzen-style hypersequent calculus is provided for CRL and used to establish co-NP completeness results for these logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron A. (1987). A constructive analysis of RM. J. Symb. Log. 52(4): 939–951

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron A. (1991). Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4(3–4): 225–248

    Article  MATH  MathSciNet  Google Scholar 

  3. Baaz M., Hájek P., Montagna F. and Veith H. (2001). Complexity of t-tautologies. Ann. Pure Appl. Log. 113(1): 3–11

    Article  Google Scholar 

  4. Cignoli R. and Torrens A. (2005). Standard completeness of Hájek basic logic and decompositions of BL-chains. Soft Comput. 9(12): 862–868

    Article  MATH  Google Scholar 

  5. Cintula, P.: Weakly implicative (fuzzy) logics I: basic properties. Arch. Math. Log. 45(6) (2007)

  6. De Baets B. and Fodor J. (1999). Residual operators of uninorms. Soft Comput. 3: 89–100

    Google Scholar 

  7. De Baets B. and Fodor J. (1999). Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104: 133–136

    Article  MATH  MathSciNet  Google Scholar 

  8. Fodor J., Yager R.R. and Rybalov A. (1997). Structure of uni-norms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5: 411–427

    Article  MathSciNet  Google Scholar 

  9. Gabbay D., Metcalfe G. and Olivetti N. (2004). Hypersequents and fuzzy logic. Revista de la Real Academia de Ciencias (RACSAM) 98(1): 113–126

    MATH  MathSciNet  Google Scholar 

  10. Girard J. (1987). Linear logic. Theoret. Comput. Sci. 50: 1–102

    Article  MATH  MathSciNet  Google Scholar 

  11. Gottwald, S.: A treatise on many-valued logics. In: Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock (2000)

  12. Gurevich Y.S. and Kokorin A.I. (1963). Universal equivalence of ordered abelian groups (in Russian). Algebra i logika 2: 37–39

    MATH  Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

  14. Hájek P. and Valdés J. (1994). An analysis of MYCIN-like expert systems. Mathw. Soft Comput. 1: 45–68

    Google Scholar 

  15. Hart J., Rafter L. and Tsinakis C. (2002). The structure of commutative residuated lattices. Int. J. Algebra Comput. 12(4): 509–524

    Article  MATH  MathSciNet  Google Scholar 

  16. Hu S. and Li Z. (2001). The structure of continuous uni-norms. Fuzzy Sets Syst. 124: 43–52

    Article  MATH  MathSciNet  Google Scholar 

  17. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. (to appear)(2007)

  18. Metcalfe G., Olivetti N. and Gabbay D. (2004). Analytic proof calculi for product logics. Arch. Math. Log. 43(7): 859–889

    MATH  MathSciNet  Google Scholar 

  19. Metcalfe G., Olivetti N. and Gabbay D. (2005). Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Trans. Comput. Log. 6(3): 578–613

    Article  MathSciNet  Google Scholar 

  20. Silvert W. (1979). Symmetric summation: a class of operations on fuzzy sets. IEEE Trans. Man. Cybern. 9: 657–659

    Article  MATH  MathSciNet  Google Scholar 

  21. Yager R.R. (2001). Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122: 167–175

    Article  MATH  MathSciNet  Google Scholar 

  22. Yager R.R. (2002). Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141(1): 217–232

    Article  MATH  MathSciNet  Google Scholar 

  23. Yager R.R. and Rybalov A. (1996). Uninorm aggregation operators. Fuzzy Sets Syst. 80: 111–120

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Metcalfe.

Additional information

Research supported by Marie Curie Fellowship Grant HPMF-CT-2004-501043.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabbay, D., Metcalfe, G. Fuzzy logics based on [0,1)-continuous uninorms. Arch. Math. Logic 46, 425–449 (2007). https://doi.org/10.1007/s00153-007-0047-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-007-0047-1

Keywords

Mathematics Subject Classification (2000)

Navigation