Skip to main content
Log in

Numerical optimization of the thickness distribution of three-dimensional structures with respect to their structural acoustic properties

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper describes a numerical method to optimize the thickness distribution of three-dimensional structures with respect to various vibrational and structural properties. A combination of a commercially available finite element (FE) software package and additional user-written programs is used to modify the shape (but not the number of nodes and elements) of FE models of the structures to be optimized. The design variables are the structure's local thickness values at selected surface nodes. Possible objectives of the optimization include the minimization of the vibration level, the minimization of the structural mass, the maximization of the fundamental frequency, and the maximization of the difference between two arbitrarily chosen natural frequencies. The optimization procedure is applied to three example structures, namely, a rectangular plate, two plates joined at 90°, and a gearbox. Depending on the particular structure and on the choice of the objective function and constraints, the vibrational and structural properties can be substantially improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ABAQUS (2001a) ABAQUS/standard user's manual, version 6.2. Hibbit, Karlsson and Sorensen, Pawtucket

  • ABAQUS (2001b) ABAQUS theory manual, version 6.2. Hibbit, Karlsson and Sorensen, Pawtucket

  • Belegundu AD, Salagame RR, Koopmann GH (1994) A general optimization strategy for sound power minimization. Struct Optim 8(2–3):113–119

    Article  Google Scholar 

  • Bös J (2004) Numerical shape optimization in structural acoustics. Ph.D. thesis, Darmstadt University of Technology. Shaker Verlag, Aachen

  • Bös J, Nordmann R (2003) Numerical structural optimization with respect to the reduction of structure borne sound using various spline formulations. Acta Acust United Acust 89(1):39–52

    Google Scholar 

  • Bregant L, Puzzi S (2003) Optimisation by evolutionary algorithms of free-layer damping treatments on plates. Int J Acoust Vib 8(1):15–20

    Google Scholar 

  • Constans EW, Koopmann GH, Belegundu AD (1998) The use of modal tailoring to minimize the radiated sound power of vibrating shells: theory and experiment. J Sound Vib 217(2):335–350

    Article  Google Scholar 

  • Cunefare KA, Koopmann GH (1992) Acoustic design sensitivity for structural radiators. ASME J Vib Acoust 114(2):178–186

    Article  Google Scholar 

  • Fritze D, Marburg S, Hardtke H-J (2003) Reducing radiated sound power of plates and shallow shells by local modification of geometry. Acta Acust United Acust 89(1):53–60

    Google Scholar 

  • Fuller CR, Elliott SJ, Nelson PA (1996) Active control of vibration (2nd printing 1997). Academic, London

    Google Scholar 

  • Grandhi RV (1992) Structural optimization with frequency constraints—a review (AIAA-92-4813). In: Proceedings of the 4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, Cleveland, 21–23 September 1992

  • Grandhi RV, Bharatram G, Venkayya VB (1992) Optimum design of plate structures with multiple frequency constraints. Struct Optim 5:100–107

    Article  Google Scholar 

  • Haftka RT, Gürdal Z (1992) Elements of structural optimization, 3rd revised and expanded edn. Kluwer, Dordrecht

    Google Scholar 

  • Hambric SA (1995) Approximation techniques for broad-band acoustic radiated noise design optimization problems. ASME J Vib Acoust 117(1):136–144

    Article  Google Scholar 

  • Hambric SA (1996) Sensitivity calculations for broad-band acoustic radiated noise design optimization problems. ASME J Vib Acoust 118(3):529–532

    Article  Google Scholar 

  • Hibinger F (1998) Numerische Strukturoptimierung in der Maschinenakustik (in German, Numerical Structural Optimization in Machine Acoustics). Ph.D. thesis, Darmstadt University of Technology. Shaker Verlag, Aachen

  • Hinton E, Özakça M, Sienz J (1993) Optimum shapes of vibrating axisymmetric plates and shells. J Sound Vib 167(3):511–528

    Article  MATH  Google Scholar 

  • Hinton E, Özakça M, Rao NVR (1995a) Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells. Part 1: Finite strip formulation. J Sound Vib 181(4):553–566

    Article  Google Scholar 

  • Hinton E, Özakça M, Rao NVR (1995b) Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells. Part 2: Shape optimization. J Sound Vib 181(4):567–581

    Article  Google Scholar 

  • Inoue K, Townsend DP, Coy JJ (1993) Optimum design of a gearbox for low vibration. ASME J Mech Des 115:1002–1007

    Article  Google Scholar 

  • Keane AJ (1995) Passive vibration control via unusual geometries: the application of genetic algorithm optimization to structural design. J Sound Vib 185(3):441–453

    Article  MATH  MathSciNet  Google Scholar 

  • Keane AJ, Bright AP (1996) Passive vibration control via unusual geometries: experiments on model aerospace structures. J Sound Vib 190(4):713–719

    Article  Google Scholar 

  • Kollmann FG (2000) Maschinenakustik: Grundlagen, Meßtechnik, Berechnung, Beeinflussung (2., überarb. Aufl.) (in German, Machine acoustics—basics, measurement techniques, computation, control, 2nd revised edn.). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koopmann GH, Fahnline JB (1997) Designing quiet structures: a sound power minimization approach. Academic, London

    Google Scholar 

  • Lamancusa JS (1988) Geometric optimization of internal combustion engine induction systems for minimum noise transmission. J Sound Vib 127(2):303–318

    Article  Google Scholar 

  • Lamancusa JS (1993) Numerical optimization techniques for structural-acoustic design of rectangular panels. Comput Struct 48(4):661–675

    Article  MATH  Google Scholar 

  • Leissa A (1993) Vibration of plates (originally issued by NASA, 1973). American Institute of Physics (for the Acoustical Society of America), Woodbury

  • Lumsdaine A, Scott RA (1998) Shape optimization of unconstrained viscoelastic layers using continuum finite elements. J Sound Vib 216(1):29–52

    Article  Google Scholar 

  • Lyon RH (2000) Designing for product sound quality. Dekker, New York

    Google Scholar 

  • Lyon RH, Mark WD, Pyle RW Jr (1973) Synthesis of helicopter rotor tips for less noise. J Acoust Soc Am 53(2):607–618

    Article  Google Scholar 

  • Marburg S (2002a) A general concept for design modification of shell meshes in structural-acoustic optimization—Part I: Formulation of the concept. Finite Elem Anal Des 38(8):725–735

    Article  MATH  Google Scholar 

  • Marburg S (2002b) Efficient optimization of a noise transfer function by modification of a shell structure geometry—Part I: Theory. Struct Multidiscipl Optim 24(1):51–59

    Article  Google Scholar 

  • Marburg S (2002c) Developments in structural-acoustic optimization for passive noise control. Arch Comput Methods Eng (State of the art reviews) 9(4):291–370

    MATH  Google Scholar 

  • Marburg S, Hardtke H-J (2001) Shape optimization of a vehicle hat-shelf: improving acoustic properties for different load cases by maximizing first eigenfrequency. Comput Struct 79(20–21):1943–1957

    Article  Google Scholar 

  • Marburg S, Hardtke H-J (2002a) A general concept for design modification of shell meshes in structural-acoustic optimization—Part II: Application to a vehicle floor panel in sedan interior noise problems. Finite Elem Anal Des 38(8):737–754

    Article  MATH  Google Scholar 

  • Marburg S, Hardtke H-J (2002b) Efficient optimization of a noise transfer function by modification of a shell structure geometry—Part II: Application to a vehicle dashboard. Struct Multidiscipl Optim 24(1):60–71

    Article  Google Scholar 

  • Marburg S, Hardtke H-J, Schmidt R, Pawandenat D (1997) Application of the concept of acoustic influence coefficients for the optimization of a vehicle roof. Eng Anal Bound Elem 20(4):305–310

    Article  Google Scholar 

  • Marburg S, Beer H-J, Gier J, Hardtke H-J, Rennert R, Perret F (2002) Experimental verification of structural-acoustic modelling and design optimization. J Sound Vib 252(4):591–615

    Article  Google Scholar 

  • McMillan AJ, Keane AJ (1996) Shifting resonances from a frequency band by applying concentrated masses to a thin rectangular plate. J Sound Vib 192(2):549–562

    Article  Google Scholar 

  • McMillan AJ, Keane AJ (1997) Vibration isolation in a thin rectangular plate using a large number of optimally positioned point masses. J Sound Vib 202(2):219–234

    Article  Google Scholar 

  • Mittelmann HD, Spellucci P (2005) Decision tree for optimization software. http://plato.asu.edu/guide.html. Cited 7 April 2006

  • Moshrefi-Torbati M, Simonis de Cloke C, Keane AJ (1998) Vibrational optimization of a mass-loaded stepped plate. J Sound Vib 213(5):865–887

    Article  Google Scholar 

  • Moshrefi-Torbati M, Keane AJ, Elliott SJ, Brennan MJ, Rogers E (2003) Passive vibration control of a satellite boom structure by geometric optimization using genetic algorithm. J Sound Vib 267(4):879–892

    Article  Google Scholar 

  • Munjal ML (ed) (2002) IUTAM symposium on designing for quietness. Proceedings of the IUTAM Symposium on Designing for Quietness, 12–14 December 2000, Bangalore. Kluwer, Dordrecht

  • Naghshineh K, Koopmann GH (1994) An active control strategy for achieving weak radiator structures. ASME J Vib Acoust 116(1):31–37

    Article  Google Scholar 

  • Naghshineh K, Koopmann GH, Belegundu AD (1992) Material tailoring of structures to achieve a minimum radiation condition. J Acoust Soc Am 92(2, Pt 1):841–855

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    MATH  Google Scholar 

  • Nelson PA, Elliott SJ (1992) Active control of sound (3rd printing 1995). Academic, London

    Google Scholar 

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Olhoff N (1970) Optimal design of vibrating circular plates. Int J Solids Struct 6:139–156

    Article  MATH  Google Scholar 

  • Olhoff N (1974) Optimal design of vibrating rectangular plates. Int J Solids Struct 10(1):93–109

    Article  MATH  MathSciNet  Google Scholar 

  • Özakça M, Hinton E (1994a) Free vibration analysis and optimisation of axisymmetric plates and shells—I. Finite element formulation. Comput Struct 52(6):1181–1197

    Article  Google Scholar 

  • Özakça M, Hinton E (1994b) Free vibration analysis and optimisation of axisymmetric plates and shells—II. Shape optimisation. Comput Struct 52(6):1199–1211

    Article  Google Scholar 

  • Pedersen NL (2005) Designing plates for minimum internal resonances. Struct Multidiscipl Optim 30(4):297–307

    Article  Google Scholar 

  • Powell MJD (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez S, Hennart J-P (eds) Advances in optimization and numerical analysis. Proceedings of the 6th Workshop on Optimization and Numerical Analysis. Kluwer, Dordrecht, pp 51–67

    Google Scholar 

  • Powell MJD (1998) Direct search algorithms for optimization calculations. Acta Numer 7:287–336. Also available as DAMTP 1998/NA04, University of Cambridge. http://www.damtp.am.ac.uk/user/na/NA_papers/NA1998_04.ps.gz. Cited 7 April 2006

    Google Scholar 

  • Pritchard JI, Adelman HM, Haftka RT (1987) Sensitivity analysis and optimization of nodal point placement for vibration control. J Sound Vib 119(2):277–289

    Article  Google Scholar 

  • Ratle A, Berry A (1998) Use of genetic algorithms for the vibroacoustic optimization of a plate carrying point-masses. J Acoust Soc Am 104(6):3385–3397

    Article  Google Scholar 

  • St. Pierre RL Jr, Koopmann GH (1995) A design method for minimizing the sound power radiated from plates by adding optimally sized, discrete masses. ASME J Vib Acoust 117(Special 50th Anniversary Design Issue):243–251

    Article  Google Scholar 

  • Thambiratnam DP, Thevendran V (1988) Optimum vibrating shapes of beams and circular plates. J Sound Vib 121(1):13–23

    Article  Google Scholar 

  • Tinnsten M (2000) Optimization of acoustic response—a numerical and experimental comparison. Struct Multidiscipl Optim 19(2):122–129

    Article  Google Scholar 

  • Tinnsten M, Carlsson P (2002) Numerical optimization of violin top plates. Acta Acust United Acust 88(2):278–285

    Google Scholar 

  • Tinnsten M, Esping B, Jonsson M (1999) Optimization of acoustic response. Struct Optim 18(1):36–47

    Article  Google Scholar 

  • Tinnsten M, Carlsson P, Jonsson M (2002) Stochastic optimization of acoustic response—a numerical and experimental comparison. Struct Multidiscipl Optim 23(6):405–411

    Article  Google Scholar 

  • Yildiz A, Stevens K (1985) Optimum thickness distribution of unconstrained viscoelastic damping layer treatments for plates. J Sound Vib 103(2):183–199

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (2000) The finite element method: the basis, solid mechanics, and fluid dynamics, 5th edn (reprint 2002, three volumes). Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Bös.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bös, J. Numerical optimization of the thickness distribution of three-dimensional structures with respect to their structural acoustic properties. Struct Multidisc Optim 32, 12–30 (2006). https://doi.org/10.1007/s00158-005-0560-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-005-0560-y

Keywords

Navigation