Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2010

01.10.2010 | Medical and Bioengineering Application

Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity

verfasst von: Heesuk Kang, Chia-Ying Lin, Scott J. Hollister

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tissue engineering scaffolds play critical roles in skeletal tissue regeneration by supporting physiological loads as well as enhancing cell/tissue migration and formation. These roles can be fulfilled by the functional design of scaffold pore architectures such that the scaffold provides proper mechanical and mass transport environments for new tissue formation. These roles require simultaneous design of mechanical and mass transport properties. In this paper, a numerical homogenization based topology optimization scheme was applied to the design of three dimensional unit microstructures for tissue engineering scaffolds. As measures of mechanical and mass transport environments, target effective bulk modulus and isotropic diffusivity were achieved by optimal design of porous microstructure. Cross property bounds between bulk modulus and diffusivity were adapted to determine feasible design targets for a given porosity. Results demonstrate that designed microstructures could reach cross property bounds for porosity ranging from 30% to 60%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adachi T, Osako Y, Tanaka M, Hojo M, Hollister S (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972CrossRef Adachi T, Osako Y, Tanaka M, Hojo M, Hollister S (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972CrossRef
Zurück zum Zitat Anderson ARA, Chaplain MAJ (1998) A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett 11(3):109–114MATHCrossRef Anderson ARA, Chaplain MAJ (1998) A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Lett 11(3):109–114MATHCrossRef
Zurück zum Zitat Auriault JL, Lewandowska J (2001) Upscaling: cell symmetries and scale separation. Transport Porous Med 43(3):473–485CrossRefMathSciNet Auriault JL, Lewandowska J (2001) Upscaling: cell symmetries and scale separation. Transport Porous Med 43(3):473–485CrossRefMathSciNet
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl Math 71(2):197–224MathSciNet Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl Math 71(2):197–224MathSciNet
Zurück zum Zitat Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–166 Boschetti F, Pennati G, Gervaso F, Peretti GM, Dubini G (2004) Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41:159–166
Zurück zum Zitat Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45:4130–4146MATHCrossRef Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45:4130–4146MATHCrossRef
Zurück zum Zitat Chu TMG, Orton DG, Hollister SJ, Feinberg SE (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23(5):1283–1293CrossRef Chu TMG, Orton DG, Hollister SJ, Feinberg SE (2002) Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials 23(5):1283–1293CrossRef
Zurück zum Zitat de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44:7092–7109MATHCrossRef de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44:7092–7109MATHCrossRef
Zurück zum Zitat Demarteau O, Pillet L, Inaebnit A, Borens O, Quinn TM (2006) Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthr Cartil 14:589–596CrossRef Demarteau O, Pillet L, Inaebnit A, Borens O, Quinn TM (2006) Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthr Cartil 14:589–596CrossRef
Zurück zum Zitat Gibiansky LV, Torquato S (1996) Connection between the conductivity and bulk modulus of isotropic composite materials. Proc R Soc Lond A Math 452(1945):253–283MATHCrossRefMathSciNet Gibiansky LV, Torquato S (1996) Connection between the conductivity and bulk modulus of isotropic composite materials. Proc R Soc Lond A Math 452(1945):253–283MATHCrossRefMathSciNet
Zurück zum Zitat Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The Relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389CrossRef Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The Relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389CrossRef
Zurück zum Zitat Guest JK, Prevost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047MATHCrossRef Guest JK, Prevost JH (2006) Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047MATHCrossRef
Zurück zum Zitat Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254MATHCrossRefMathSciNet Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254MATHCrossRefMathSciNet
Zurück zum Zitat Hashin Z, Shtrikman S (1962) A variational approach to theory of effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125MATHCrossRef Hashin Z, Shtrikman S (1962) A variational approach to theory of effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125MATHCrossRef
Zurück zum Zitat Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MATHCrossRefMathSciNet Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140MATHCrossRefMathSciNet
Zurück zum Zitat Hassani B (1996) A direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Commun Numer Methods Eng 12(3):185–196MATHCrossRefMathSciNet Hassani B (1996) A direct method to derive the boundary conditions of the homogenization equation for symmetric cells. Commun Numer Methods Eng 12(3):185–196MATHCrossRefMathSciNet
Zurück zum Zitat Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524CrossRef Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524CrossRef
Zurück zum Zitat Hollister SJ, Lin CY (2007) computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 196:2991–2998MATHCrossRef Hollister SJ, Lin CY (2007) computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 196:2991–2998MATHCrossRef
Zurück zum Zitat Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103CrossRef Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103CrossRef
Zurück zum Zitat Hollister SJ, Lin CY, Kang HS, Adachi T (2008) Computational design and simulation of tissue engineering scaffolds. In: Bidanda B, Bartolo P (eds) Virtual prototyping & bio manufacturing in medical application. Springer Hollister SJ, Lin CY, Kang HS, Adachi T (2008) Computational design and simulation of tissue engineering scaffolds. In: Bidanda B, Bartolo P (eds) Virtual prototyping & bio manufacturing in medical application. Springer
Zurück zum Zitat Hollister SJ, Liao EE, Moffitt EN, Jeong CG, Williams JM (2009) Defining design targets for tissue engineering scaffolds. In: Meyer U (ed) Fundamentals of tissue engineering and regenerative medicine. Springer-Verlag Hollister SJ, Liao EE, Moffitt EN, Jeong CG, Williams JM (2009) Defining design targets for tissue engineering scaffolds. In: Meyer U (ed) Fundamentals of tissue engineering and regenerative medicine. Springer-Verlag
Zurück zum Zitat Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci-Polym Ed 12(1):107–124CrossRef Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci-Polym Ed 12(1):107–124CrossRef
Zurück zum Zitat Kang H, Hollister SJ, LaMarca F, Lin CY (2008) In situ biodegradable interbody fusion cage design by the integrated global and local topology optimization—an example on designing Yucatan Minipig Lumbar Interbody fusion cage for large animal study. 54th ORS annual meeting Kang H, Hollister SJ, LaMarca F, Lin CY (2008) In situ biodegradable interbody fusion cage design by the integrated global and local topology optimization—an example on designing Yucatan Minipig Lumbar Interbody fusion cage for large animal study. 54th ORS annual meeting
Zurück zum Zitat Kemppainen JM, Hollister SJ (2010) Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 31(2):279–287CrossRef Kemppainen JM, Hollister SJ (2010) Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 31(2):279–287CrossRef
Zurück zum Zitat Kim B, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue eng. TIBTECH 16:224–230 Kim B, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue eng. TIBTECH 16:224–230
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef
Zurück zum Zitat Lin CY (2005) Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design. Ph.D. thesis Lin CY (2005) Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design. Ph.D. thesis
Zurück zum Zitat Lin CY, Hsiao CC, Chen PQ, Hollister SJ (2004a) Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29(16):1747–1754CrossRef Lin CY, Hsiao CC, Chen PQ, Hollister SJ (2004a) Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29(16):1747–1754CrossRef
Zurück zum Zitat Lin CY, Kikuchi N, Hollister SJ (2004b) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636CrossRef Lin CY, Kikuchi N, Hollister SJ (2004b) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636CrossRef
Zurück zum Zitat Malda J, Martens D, Tramper J, van Blitterswijk C, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194 Malda J, Martens D, Tramper J, van Blitterswijk C, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194
Zurück zum Zitat Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2004) The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25:5773–5780CrossRef Malda J, Woodfield TBF, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2004) The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials 25:5773–5780CrossRef
Zurück zum Zitat McAfee PC (1999) Current concepts review: interbody fusion cages in reconstructive operations on the spine. J Bone Jt Surg Am 81:859–880 McAfee PC (1999) Current concepts review: interbody fusion cages in reconstructive operations on the spine. J Bone Jt Surg Am 81:859–880
Zurück zum Zitat Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer-Verlag, BerlinMATH Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer-Verlag, BerlinMATH
Zurück zum Zitat Sigmund O (1994a) Design of material structures using topology optimization. Ph.D. thesis Sigmund O (1994a) Design of material structures using topology optimization. Ph.D. thesis
Zurück zum Zitat Sigmund O (1994b) Materials with prescribed constitutive parameters—an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MATHCrossRefMathSciNet Sigmund O (1994b) Materials with prescribed constitutive parameters—an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329MATHCrossRefMathSciNet
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
Zurück zum Zitat Simmons C, Meguid S, Pilliar R (2001) Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains. J Orthop Res 19(2):187–194CrossRef Simmons C, Meguid S, Pilliar R (2001) Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains. J Orthop Res 19(2):187–194CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MATHCrossRefMathSciNet Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MATHCrossRefMathSciNet
Zurück zum Zitat Thomson R, Yaszemski M, Powers J, Mikos A (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci-Polym E 7(1):23–38CrossRef Thomson R, Yaszemski M, Powers J, Mikos A (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci-Polym E 7(1):23–38CrossRef
Zurück zum Zitat Wang M, Zhou S, Ding H (2004) Nonlinear diffusion in topology optimization. Struct Multidisc Optim 28:262–276CrossRefMathSciNet Wang M, Zhou S, Ding H (2004) Nonlinear diffusion in topology optimization. Struct Multidisc Optim 28:262–276CrossRefMathSciNet
Metadaten
Titel
Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity
verfasst von
Heesuk Kang
Chia-Ying Lin
Scott J. Hollister
Publikationsdatum
01.10.2010
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2010
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-010-0508-8

Weitere Artikel der Ausgabe 4/2010

Structural and Multidisciplinary Optimization 4/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.