Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2013

01.04.2013 | Research Paper

Topology optimization for fluid–thermal interaction problems under constant input power

verfasst von: Tadayoshi Matsumori, Tsuguo Kondoh, Atsushi Kawamoto, Tsuyoshi Nomura

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with density-based topology optimization considering fluid and thermal interactions, in which the Navier–Stokes and heat transport equations are coupled. We particularly focus on designing heat exchangers. In the engineering context, heat exchangers are designed while considering a certain amount of input power. Therefore it is important to maximize the performance of a heat exchanger under a constant input power. In this paper we propose a way to control the input power by introducing an extra integral equation. To be more precise, in the fluid analysis, the inlet pressure is determined by solving the extra integral equation together with the Navier–Stokes equation. By doing this we can keep the inlet power constant even when the flow channels are changed in the optimization process. Consequently, the system of equations of the fluid field takes an integrodifferential form. On the other hand, in the heat transport analysis, a single governing equation is defined for simultaneously modeling both the solid and fluid parts. The design variable is a fluid fraction whose distribution represents the topology of the solid and fluid domains. When designing heat exchangers, two different heat conditions are considered in the formulation of the optimization problems, namely temperature-dependent and temperature-independent heat sources. Through the numerical examples for designing flow channels in a heat exchanger, it is shown that distinct topologies can be obtained according to the input power and the heat source conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidisc Optim 35(2):175–180MathSciNetCrossRef Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidisc Optim 35(2):175–180MathSciNetCrossRef
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetMATHCrossRef Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetMATHCrossRef
Zurück zum Zitat Azegami H (1994) A solution to domain optimization problems (in Japanese). Trans Jpn Soc Mech Eng 60(A):1479–1486CrossRef Azegami H (1994) A solution to domain optimization problems (in Japanese). Trans Jpn Soc Mech Eng 60(A):1479–1486CrossRef
Zurück zum Zitat Azegami H, Takeuchi K (2006) A smoothing method for shape optimization: traction method using the Robin condition. Int J Comput Methods 3(1):21–33MathSciNetMATHCrossRef Azegami H, Takeuchi K (2006) A smoothing method for shape optimization: traction method using the Robin condition. Int J Comput Methods 3(1):21–33MathSciNetMATHCrossRef
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, New York Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, New York
Zurück zum Zitat Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Struct Multidisc Optim 30(6):428–436MathSciNetCrossRef Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Struct Multidisc Optim 30(6):428–436MathSciNetCrossRef
Zurück zum Zitat Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transfer 50(15–16):2859–2873MATHCrossRef Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transfer 50(15–16):2859–2873MATHCrossRef
Zurück zum Zitat COMSOL Multiphysics (2008) User’s guide, version 3.5a. COMSOL AB COMSOL Multiphysics (2008) User’s guide, version 3.5a. COMSOL AB
Zurück zum Zitat Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference
Zurück zum Zitat Dede EM (2011) Experimental investigation of the thermal performance of a manifold hierarchical microchannel cold plate. In: Proceeding of the ASME 2011, Pacific Rim technical conference and exhibition on packaging and integration of electronic and photonic systems, MEMS and NEMS. doi:10.1115/IPACK2011-52023 Dede EM (2011) Experimental investigation of the thermal performance of a manifold hierarchical microchannel cold plate. In: Proceeding of the ASME 2011, Pacific Rim technical conference and exhibition on packaging and integration of electronic and photonic systems, MEMS and NEMS. doi:10.​1115/​IPACK2011-52023
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 30(3):181–192MathSciNetMATHCrossRef Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 30(3):181–192MathSciNetMATHCrossRef
Zurück zum Zitat Gersborg-Hansen A, Bendsøe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31(4):251–259MATHCrossRef Gersborg-Hansen A, Bendsøe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31(4):251–259MATHCrossRef
Zurück zum Zitat Gill PE, Murray W, Saunders MA (2007) User’s guide for SNOPT version 7: software for large-scale nonlinear programming. Department of Mathematics, University of California Gill PE, Murray W, Saunders MA (2007) User’s guide for SNOPT version 7: software for large-scale nonlinear programming. Department of Mathematics, University of California
Zurück zum Zitat Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transfer 52:2721–2732MATHCrossRef Iga A, Nishiwaki S, Izui K, Yoshimura M (2009) Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. Int J Heat Mass Transfer 52:2721–2732MATHCrossRef
Zurück zum Zitat Katamine E, Azegami H, Tsubata T, Itoh S (2005) Solution to shape optimization problems of viscous flow fields. Int J Comput Fluid Dyn 19(1):45–51MathSciNetMATHCrossRef Katamine E, Azegami H, Tsubata T, Itoh S (2005) Solution to shape optimization problems of viscous flow fields. Int J Comput Fluid Dyn 19(1):45–51MathSciNetMATHCrossRef
Zurück zum Zitat Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44(1):19–24CrossRef Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44(1):19–24CrossRef
Zurück zum Zitat Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidisc Optim 45(5):693–701MathSciNetCrossRef Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidisc Optim 45(5):693–701MathSciNetCrossRef
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MathSciNetMATH Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MathSciNetMATH
Zurück zum Zitat Li Q, Steven GP, Xie YM, Querin OM (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transfer 47(23):5071–5083MATHCrossRef Li Q, Steven GP, Xie YM, Querin OM (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transfer 47(23):5071–5083MATHCrossRef
Zurück zum Zitat Mohammadi B, Pironneau O (2009) Applied shape optimization for fluids (Numerical mathematics and scientific computation). Oxford University Press, OxfordCrossRef Mohammadi B, Pironneau O (2009) Applied shape optimization for fluids (Numerical mathematics and scientific computation). Oxford University Press, OxfordCrossRef
Zurück zum Zitat Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301CrossRef Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys Rev E 75:016301CrossRef
Zurück zum Zitat Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATHCrossRef Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65(7):975–1001MathSciNetMATHCrossRef
Zurück zum Zitat Pingen G, Meyer D (2009) Topology optimization for thermal transport. In: Proceedings of the ASME fluids engineering division summer conference, vol 1, PTS A-C, pp 2237–2243 Pingen G, Meyer D (2009) Topology optimization for thermal transport. In: Proceedings of the ASME fluids engineering division summer conference, vol 1, PTS A-C, pp 2237–2243
Zurück zum Zitat Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidisc Optim 34(6):507–524MathSciNetCrossRef Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidisc Optim 34(6):507–524MathSciNetCrossRef
Zurück zum Zitat Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237MathSciNetCrossRef Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237MathSciNetCrossRef
Zurück zum Zitat Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252CrossRef Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252CrossRef
Zurück zum Zitat Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRef Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRef
Zurück zum Zitat Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233CrossRef Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233CrossRef
Zurück zum Zitat Yoon GH (2012) Topological layout design of electro-fluid–thermal-compliant actuator. Comput Methods Appl Mech Eng 209–212(1):28–44CrossRef Yoon GH (2012) Topological layout design of electro-fluid–thermal-compliant actuator. Comput Methods Appl Mech Eng 209–212(1):28–44CrossRef
Metadaten
Titel
Topology optimization for fluid–thermal interaction problems under constant input power
verfasst von
Tadayoshi Matsumori
Tsuguo Kondoh
Atsushi Kawamoto
Tsuyoshi Nomura
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-013-0887-8

Weitere Artikel der Ausgabe 4/2013

Structural and Multidisciplinary Optimization 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.