Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2014

01.10.2014 | RESEARCH PAPER

Element deformation scaling for robust geometrically nonlinear analyses in topology optimization

verfasst von: N. P. van Dijk, M. Langelaar, F. van Keulen

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Geometrically nonlinear structural analyses in conventional density-based Topology Optimization (TO) may fail due to excessive deformation, concerning in particular compression in low stiffness parts (void) of the domain. This limits the application of TO in the field of realistic large deflection mechanisms, actuators and multi-stable structures.
This paper investigates the source of the instabilities that may be encountered using the conventional strategy to scale the stiffness of finite elements using the density (e.g. SIMP). Based on the findings, we propose a new design interpolation, called Element Deformation Scaling (EDS), to obtain more robust structural analyses for geometrically nonlinear TO. Instead of scaling the stiffness, EDS scales the local internal displacements, and therefore, the deformation, in a low-density finite element. This ensures that, even for extremely deformed finite elements, the internal displacements remain in the range of applicability of the material model and finite element description.
The effectiveness of the proposed method is compared with the conventional approach (e.g. SIMP) and the Element Connectivity Parameterization (ECP) method using several numerical experiments using path-following techniques. The proposed method, EDS, is demonstrated to lead to more robust structural analyses than the other approaches. However, EDS still has limitations. These limitations are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It is also possible to choose, for instance, the average of the rotations of the sides of a finite element. However, any choice for the rotation leads to similar problems as the ones discussed here.
 
Literatur
Zurück zum Zitat Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76(1):27–68MathSciNetCrossRefMATH Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76(1):27–68MathSciNetCrossRefMATH
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MathSciNetCrossRefMATH
Zurück zum Zitat Bathe KJ (1996) Finite element procedures vol 2. Prentice hall Englewood Cliffs, NJ Bathe KJ (1996) Finite element procedures vol 2. Prentice hall Englewood Cliffs, NJ
Zurück zum Zitat Bellini PX, Chulya A (1987) An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Comput Struct 26(1):99–110CrossRefMATH Bellini PX, Chulya A (1987) An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Comput Struct 26(1):99–110CrossRefMATH
Zurück zum Zitat Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196CrossRefMATH Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57(8):1177–1196CrossRefMATH
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer Verlag, Berl Heidelberg Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer Verlag, Berl Heidelberg
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459CrossRefMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430CrossRefMATH
Zurück zum Zitat Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104CrossRef
Zurück zum Zitat Crisfield MA (1991) Nonlinear finite element analysis of solids and structures. Volume 1:. Essentials. Wiley, New York NY (United States) Crisfield MA (1991) Nonlinear finite element analysis of solids and structures. Volume 1:. Essentials. Wiley, New York NY (United States)
Zurück zum Zitat Du Y, Chen L, Luo Z (2008) Topology synthesis of geometrically nonlinear compliant mechanisms using meshless methods. Acta Mech Solida Sin 21(1):51–61CrossRef Du Y, Chen L, Luo Z (2008) Topology synthesis of geometrically nonlinear compliant mechanisms using meshless methods. Acta Mech Solida Sin 21(1):51–61CrossRef
Zurück zum Zitat Geers MGD (1999) Enhanced solution control for physically and geometrically non-linear problems. Part I–the subplane control approach. Int J Numer Methods Eng 46(2):177–204MathSciNetCrossRefMATH Geers MGD (1999) Enhanced solution control for physically and geometrically non-linear problems. Part I–the subplane control approach. Int J Numer Methods Eng 46(2):177–204MathSciNetCrossRefMATH
Zurück zum Zitat Gurtin ME (1981) An introduction to continuum mechanics, vol 158. Academic Pr Gurtin ME (1981) An introduction to continuum mechanics, vol 158. Academic Pr
Zurück zum Zitat Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642MathSciNetCrossRef Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642MathSciNetCrossRef
Zurück zum Zitat Langelaar M (2006) Design optimization of shape memory alloy structures. Delft University of Technology, PhD thesis Langelaar M (2006) Design optimization of shape memory alloy structures. Delft University of Technology, PhD thesis
Zurück zum Zitat Langelaar M, Maute K, Van Dijk NP, Van Keulen F (2010) Investigation of instabilities arising in internal element connectivity parameterization , In: 2 nd International Conference on Engineering Optimization. Lisboa, Portugal Langelaar M, Maute K, Van Dijk NP, Van Keulen F (2010) Investigation of instabilities arising in internal element connectivity parameterization , In: 2 nd International Conference on Engineering Optimization. Lisboa, Portugal
Zurück zum Zitat Langelaar M, Yoon GH, Kim YY, Van Keulen F (2011) Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization. Int J Numer Methods Eng 88(9):817–840CrossRefMATH Langelaar M, Yoon GH, Kim YY, Van Keulen F (2011) Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization. Int J Numer Methods Eng 88(9):817–840CrossRefMATH
Zurück zum Zitat Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112CrossRef Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112CrossRef
Zurück zum Zitat Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Multidiscip Optim 15(2): 81–91CrossRef Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Multidiscip Optim 15(2): 81–91CrossRef
Zurück zum Zitat Pajot JM, Maute K (2006) Topology optimization of geometrically nonlinear structures including thermo-mechanical coupling. University of Colorado, PhD thesis Pajot JM, Maute K (2006) Topology optimization of geometrically nonlinear structures including thermo-mechanical coupling. University of Colorado, PhD thesis
Zurück zum Zitat Ragon SA, Gürdal Z, Watson LT (2002) A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems. IntJSolids Struct 39(3):689–698CrossRefMATH Ragon SA, Gürdal Z, Watson LT (2002) A comparison of three algorithms for tracing nonlinear equilibrium paths of structural systems. IntJSolids Struct 39(3):689–698CrossRefMATH
Zurück zum Zitat Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3):250–252CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3):250–252CrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef
Zurück zum Zitat Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATH Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318CrossRefMATH
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefMATH
Zurück zum Zitat Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D filets using X-FEM and level set description. Struct Multidiscip Optim 33(4):425–438CrossRef Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D filets using X-FEM and level set description. Struct Multidiscip Optim 33(4):425–438CrossRef
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246CrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246CrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY (2005a) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATH Yoon GH, Kim YY (2005a) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009CrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY (2005b) The element connectivity parameterization formulation for the topology design optimization of multiphysics systems. Int J Numer Methods Eng 64(12):1649–1677CrossRefMATH Yoon GH, Kim YY (2005b) The element connectivity parameterization formulation for the topology design optimization of multiphysics systems. Int J Numer Methods Eng 64(12):1649–1677CrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefMATH Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69(10):2196–2218MathSciNetCrossRefMATH
Zurück zum Zitat Yoon GH, Kim YY, Langelaar M, Van Keulen F (2008) Theoretical aspects of the intemal element connectivity parameterization approach for topology optimization. Int J Numer Methods Eng 76(6):775–797MathSciNetCrossRefMATH Yoon GH, Kim YY, Langelaar M, Van Keulen F (2008) Theoretical aspects of the intemal element connectivity parameterization approach for topology optimization. Int J Numer Methods Eng 76(6):775–797MathSciNetCrossRefMATH
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336CrossRef
Metadaten
Titel
Element deformation scaling for robust geometrically nonlinear analyses in topology optimization
verfasst von
N. P. van Dijk
M. Langelaar
F. van Keulen
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2014
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-014-1145-4

Weitere Artikel der Ausgabe 4/2014

Structural and Multidisciplinary Optimization 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.