Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2015

01.10.2015 | RESEARCH PAPER

In-plane material filters for the discrete material optimization method

verfasst von: René Sørensen, Erik Lund

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity. Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer have to group elements together in so-called patches, so to statically impose a minimum length scale. The proposed method imposes the minimum length scale through a standard density filter known from topology optimization of isotropic materials. This minimum length scale is generally referred to as the filter radius. However, the results show that the density filter alone gives designs with large measures of non-discreteness. In order to obtain near discrete designs an additional threshold projection filter is applied, so to push the physical design variables towards their discrete bounds. However, because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series of minimum compliance examples together with a minimum mass example, and the results show that the method is indeed capable of imposing a minimum length scale onto the optimized layup.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451CrossRef Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved elements. Int J Numer Methods Eng 2:419–451CrossRef
Zurück zum Zitat Arora J, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272MATHMathSciNetCrossRef Arora J, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscip Optim 30(4):251–272MATHMathSciNetCrossRef
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology Optimization, 2nd edn. Springer Bendsøe MP, Sigmund O (2003) Topology Optimization, 2nd edn. Springer
Zurück zum Zitat Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27) Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27)
Zurück zum Zitat Chin CM, Fletcher R (1999) On the global convergence of an slp-filter algorithm that takes eqp steps. Numerical Analysis Report NA/199, Department of Mathematics, University of Dundee, Scotland Chin CM, Fletcher R (1999) On the global convergence of an slp-filter algorithm that takes eqp steps. Numerical Analysis Report NA/199, Department of Mathematics, University of Dundee, Scotland
Zurück zum Zitat Fletcher R, Leyffer S, Toint PL (1998) On the global convergence of an slp-filter algorithm. Numerical Analysis Report NA/183, Department of Mathematics, University of Dundee, Scotland Fletcher R, Leyffer S, Toint PL (1998) On the global convergence of an slp-filter algorithm. Numerical Analysis Report NA/183, Department of Mathematics, University of Dundee, Scotland
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MATHCrossRef Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MATHCrossRef
Zurück zum Zitat Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825MATHCrossRef Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825MATHCrossRef
Zurück zum Zitat Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optim 44(2):149–163CrossRef Hvejsel C, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optim 44(2):149–163CrossRef
Zurück zum Zitat Lazarov BS, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182CrossRef Lazarov BS, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182CrossRef
Zurück zum Zitat Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRef
Zurück zum Zitat Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization. John Wiley Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization. John Wiley
Zurück zum Zitat Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3-4):225–230MATHCrossRef Panda S, Natarajan R (1981) Analysis of laminated composite shell structures by finite element method. Comput Struct 14(3-4):225–230MATHCrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef
Zurück zum Zitat Sørensen SN, Sørensen R, Lund E (2014) DMTO - a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscip Optim 50(1):25–47CrossRef Sørensen SN, Sørensen R, Lund E (2014) DMTO - a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscip Optim 50(1):25–47CrossRef
Zurück zum Zitat Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATHCrossRef Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027MATHCrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef
Zurück zum Zitat Svanberg K, Svärd H (2013) Density filters for topology optimization based on the pythagorean means. Struct Multidiscip Optim 48(5):859–875MathSciNetCrossRef Svanberg K, Svärd H (2013) Density filters for topology optimization based on the pythagorean means. Struct Multidiscip Optim 48(5):859–875MathSciNetCrossRef
Zurück zum Zitat Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef
Zurück zum Zitat Zhou M, Fleury R (2012) Composite Optimization - Ply Drop-Rate Constraints for Concepts and Detailed Design. In: Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing Zhou M, Fleury R (2012) Composite Optimization - Ply Drop-Rate Constraints for Concepts and Detailed Design. In: Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing
Zurück zum Zitat Zhou M, Fleury R, Kemp M (2011) Optimization of Composits - Recent Advances and Application. The 7th Altair CAE Technology Conference, Altair Zhou M, Fleury R, Kemp M (2011) Optimization of Composits - Recent Advances and Application. The 7th Altair CAE Technology Conference, Altair
Metadaten
Titel
In-plane material filters for the discrete material optimization method
verfasst von
René Sørensen
Erik Lund
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2015
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-015-1257-5

Weitere Artikel der Ausgabe 4/2015

Structural and Multidisciplinary Optimization 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.