Skip to main content
Log in

Generalized isogeometric shape sensitivity analysis in curvilinear coordinate system and shape optimization of shell structures

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A generalized sensitivity formulation described in a curvilinear coordinate system is proposed. Utilizing it, the continuum-based isogeometric shape sensitivity analysis method for the shell components is developed in the curvilinear coordinates derived from the given NURBS geometry. In isogeometric approach, the designs are embedded into the NURBS basis functions and the control points so that geometrically exact shell models can be incorporated in both response and sensitivity analyses. The precise shape sensitivities can be obtained by considering accurate and continuous normal and curvatures in the boundary integrals of the boundary resultants of the shell and their material derivatives. Through numerical examples, the developed isogeometric shape sensitivity is verified to demonstrate excellent agreements with finite difference sensitivity. Also, the importance of higher order geometric information in the sensitivity expressions is identified. For the shape optimization problem of the shell, the proposed method works well with boundary resultants accompanying severe curvature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad S, Orons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng 2:419–451

    Article  Google Scholar 

  • Ansola R, Canales J, Tárrago JA, Rasmussen J (2002) An integrated approach for shape and topology optimization of shell structures. Comput Methods Appl Mech Eng 80:447–458

    Google Scholar 

  • Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MathSciNet  MATH  Google Scholar 

  • Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79:2053–2062

    Article  Google Scholar 

  • Bletzinger KU, Firl M, Linhard J, Wüchner R (2010) Optimal shapes of mechanically motivated surfaces. Comput Methods Appl Mech Eng 199:324–333

    Article  MATH  Google Scholar 

  • Bouclier R, Elguedj T, Combescure A (2013) Efficient isogeometric NURBS-based solid-shell elements: mixed formulation and B-method. Comput Methods Appl Mech Eng 267:86–110

    Article  MathSciNet  MATH  Google Scholar 

  • Cho S, Ha SH (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38:53–70

    Article  MathSciNet  MATH  Google Scholar 

  • Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    Article  MathSciNet  MATH  Google Scholar 

  • Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:264–275

    Article  MathSciNet  Google Scholar 

  • Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    Article  MathSciNet  MATH  Google Scholar 

  • Espath LFR, Linn RV, Awruch AM (2011) Shape optimization of shell structures based on NURBS description using automatic differentiation. Int J Numer Methods Eng 88:613–636

    Article  MATH  Google Scholar 

  • Farin G (2002) Curves and surfaces for CAGD: a practical guide. Academic, New York

    Google Scholar 

  • Fuβeder D, Simeon B, Vuong AV (2015) Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput Methods Appl Mech Eng 286:313–331

    Article  Google Scholar 

  • Haftka RT, Grandhi RV (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57:91–106

    Article  MathSciNet  MATH  Google Scholar 

  • Hassani B, Tavakkoli SM, Ghasemnejad H (2013) Simultaneous shape and topology optimization of shell structures. Struct Multidiscip Optim 48:221–233

    Article  MathSciNet  MATH  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic, New York

    MATH  Google Scholar 

  • Hinton E, Rao NVR (1993) Structural shape optimization of shells and folded plates using two-noded finite strips. Comput Struct 46(6):1055–1071

    Article  MATH  Google Scholar 

  • Hosseini S, Remmers JJC, Verhoosel CV, Borst R (2014) An isogeometric continuum shell element for non-linear analysis. Comput Methods Appl Mech Eng 271:1–22

    Article  MATH  Google Scholar 

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  • Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love element. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MATH  Google Scholar 

  • Kiendl J, Schmidt R, Wüchner R, Bletzinger KU (2014) Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput Methods Appl Mech Eng 274:148–167

    Article  MATH  Google Scholar 

  • Naghdi PM (1963) Foundations of elastic shell theory. In: Sneddon IN (ed) Progress in solid mechanics, vol 4. North-Holland, Amsterdam

    Google Scholar 

  • Nagy AP, Abdalla MM, Gürdal Z (2010) Isogeometric sizing and shape optimisation of beam structures. Comput Methods Appl Mech Eng 199:1216–1230

    Article  MATH  Google Scholar 

  • Nagy AP, Ijsselmuiden ST, Abdalla MM (2013) Isogeometric design of anisotropic shells: optimal form and material distribution. Comput Methods Appl Mech Eng 264:145–162

    Article  MathSciNet  MATH  Google Scholar 

  • Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New York

    Book  Google Scholar 

  • Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199:2059–2071

    Article  MATH  Google Scholar 

  • Rogers DF (2001) An introduction to NURBS with historical perspective. Academic, San Diego

    Google Scholar 

  • Roh HY, Cho M (2003) Development of geometrically exact new shell elements based on general curvilinear coordinates. Comput Methods Appl Mech Eng 56(1):81–115

    MATH  Google Scholar 

  • Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2012R1A1A1040019). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Doh Ha.

Appendix. Gradient computations for design sensitivity analysis

Appendix. Gradient computations for design sensitivity analysis

The unit normal vector a 3 to the other base vectors can be calculated as

$$ {\mathbf{a}}_3=\frac{{\mathbf{a}}_1\times {\mathbf{a}}_2}{\left\Vert {\mathbf{a}}_1\times {\mathbf{a}}_2\right\Vert }. $$
(A-1)

Its gradient computation shown in (68) with respect to the shape parameter is given by

$$ \nabla {\mathbf{a}}_3\cdot \mathbf{V}=\frac{{\mathbf{V}}_{,1}\times {\mathbf{a}}_2}{\left\Vert {\mathbf{a}}_1\times {\mathbf{a}}_2\right\Vert }+\frac{{\mathbf{a}}_1\times {\mathbf{V}}_{,2}}{\left\Vert {\mathbf{a}}_1\times {\mathbf{a}}_2\right\Vert }-\frac{{\mathbf{a}}_3}{\left\Vert {\mathbf{a}}_1\times {\mathbf{a}}_2\right\Vert}\left({\mathbf{a}}_3\cdot \left({\mathbf{V}}_{,1}\times {\mathbf{a}}_2+{\mathbf{a}}_1\times {\mathbf{V}}_{,2}\right)\right) $$
(A-2)

where

$$ \nabla {\mathbf{a}}_{\alpha}\cdot \mathbf{V}=\frac{\partial }{\partial {}^n\mathbf{x}}\left(\frac{\partial {}^n\mathbf{x}}{\partial {\theta}^{\alpha }}\right)\cdot \mathbf{V}={\mathbf{V}}_{,\alpha }. $$
(A-3)

Obviously, V = V(n x) in all equations in this appendix. Also in (68), the following yields

$$ \nabla {\mathbf{a}}^{\alpha}\cdot \mathbf{V}=\nabla \left({a}^{\alpha \beta }{\mathbf{a}}_{\beta}\right)\cdot \mathbf{V}=\left(\nabla {a}^{\alpha \beta}\cdot \mathbf{V}\right){\mathbf{a}}_{\beta }+{a}^{\alpha \beta }{\mathbf{V}}_{,\beta }. $$
(A-4)

Using a αλ a λμ  = δ α μ , we have

$$ \nabla {a}^{\alpha \beta}\cdot \mathbf{V}=-{a}^{\alpha \lambda}\left(\nabla {a}_{\lambda \mu}\cdot \mathbf{V}\right){a}^{\mu \beta }=-{a}^{\alpha \lambda}\left({\mathbf{V}}_{,\lambda}\cdot {\mathbf{a}}_{\mu }+{\mathbf{a}}_{\lambda}\cdot {\mathbf{V}}_{,\mu}\right){a}^{\mu \beta }. $$
(A-5)

The gradient computations shown in (77) are given by

$$ \begin{array}{c}\hfill \nabla {\varGamma}_{\alpha \beta}^{\mu}\cdot \mathbf{V}=\left(\nabla {\mathbf{a}}_{\alpha, \beta}\cdot \mathbf{V}\right)\cdot {\mathbf{a}}^{\mu }+{\mathbf{a}}_{\alpha, \beta}\cdot \left(\nabla {\mathbf{a}}^{\mu}\cdot \mathbf{V}\right)\hfill \\ {}\hfill ={\mathbf{V}}_{,\alpha \beta}\cdot {\mathbf{a}}^{\mu }+{\mathbf{a}}_{\alpha, \beta}\cdot \left(\nabla {a}^{\mu \lambda}\cdot \mathbf{V}\right){\mathbf{a}}_{\lambda }+{a}^{\mu \lambda }{\mathbf{V}}_{,\lambda}\hfill \end{array} $$
(A-6)

and

$$ \begin{array}{c}\hfill \nabla {b}_{\alpha \beta}\cdot \mathbf{V}=\left(\nabla {\mathbf{a}}_3\cdot \mathbf{V}\right)\cdot {\mathbf{a}}_{\alpha, \beta }+{\mathbf{a}}_3\cdot \left(\nabla {\mathbf{a}}_{\alpha, \beta}\cdot \mathbf{V}\right)\hfill \\ {}\hfill =\left(\nabla {\mathbf{a}}_3\cdot \mathbf{V}\right)\cdot {\mathbf{a}}_{\alpha, \beta }+{\mathbf{a}}_3\cdot {\mathbf{V}}_{,\alpha \beta }.\hfill \end{array} $$
(A-7)

Also in (79), we have

$$ \nabla {b}_{\alpha}^{\beta}\cdot \mathbf{V}=\left(\nabla {b}_{\lambda \alpha}\cdot \mathbf{V}\right){a}^{\beta \lambda }+{b}_{\lambda \alpha}\left(\nabla {a}^{\beta \lambda}\cdot \mathbf{V}\right). $$
(A-8)

Moreover, the gradient computations of the material tensors in (80) can be given from (52),

$$ \begin{array}{c}\hfill \nabla {C}^{\alpha \beta \mu \lambda}\cdot \mathbf{V}=\frac{E}{2\left(1+\nu \right)}\left\{\left(\nabla {a}^{\alpha \mu}\cdot \mathbf{V}\right){a}^{\beta \lambda }+{a}^{\alpha \mu}\left(\nabla {a}^{\beta \lambda}\cdot \mathbf{V}\right)+\left(\nabla {a}^{\alpha \lambda}\cdot \mathbf{V}\right){a}^{\beta \mu }+{a}^{\alpha \lambda}\left(\nabla {a}^{\beta \mu}\cdot \mathbf{V}\right)\right\}\hfill \\ {}\hfill +\frac{2\nu E}{2\left(1+\nu \right)\left(1-\nu \right)}\left\{\left(\nabla {a}^{\alpha \beta}\cdot \mathbf{V}\right){a}^{\mu \lambda }+{a}^{\alpha \beta}\left(\nabla {a}^{\mu \lambda}\cdot \mathbf{V}\right)\right\}\hfill \end{array} $$
(A-9)

and

$$ \nabla {C}^{\alpha 3\beta 3}\cdot \mathbf{V}=\frac{E}{2\left(1+\nu \right)}\nabla {a}^{\alpha \beta}\cdot \mathbf{V}. $$
(A-10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, Y.D. Generalized isogeometric shape sensitivity analysis in curvilinear coordinate system and shape optimization of shell structures. Struct Multidisc Optim 52, 1069–1088 (2015). https://doi.org/10.1007/s00158-015-1297-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1297-x

Keywords

Navigation