Skip to main content
Log in

Optimal design of large-scale space steel frames using cascade enhanced colliding body optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In structural size optimization usually a relatively small number of design variables is used. However, for large-scale space steel frames a large number of design variables should be utilized. This problem produces difficulty for the optimizer. In addition, the problems are highly non-linear and the structural analysis takes a lot of computational time. The idea of cascade optimization method which allows a single optimization problem to be tackled in a number of successive autonomous optimization stages, can be employed to overcome the difficulty. In each stage of cascade procedure, a design variable configuration is defined for the problem in a manner that at early stages, the optimizer deals with small number of design variables and at subsequent stages gradually faces with the main problem consisting of a large number of design variables. In order to investigate the efficiency of this method, in all stages of cascade procedure the utilized optimization algorithm is the enhanced colliding bodies optimization which is a powerful metaheuritic. Three large-scale space steel frames with 1860, 3590 and 3328 members are investigated for testing the algorithm. Numerical results show that the utilized method is an efficient tool for optimal design of large-scale space steel frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • American Institute of Steel Construction (1989) Manual of steel construction: allowable stress design. American Institute of Steel Construction

  • Aydoğdu İ, Akın A, Saka MP (2016) Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution. Adv Eng Softw 92:1–14. doi:10.1016/j.advengsoft.2015.10.013

    Article  Google Scholar 

  • Charmpis DC, Lagaros ND, Papadrakakis M (2005) Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization. Comput Methods Appl Mech Eng 194:3315–3330. doi:10.1016/j.cma.2004.12.020

    Article  MATH  Google Scholar 

  • Dreyer T, Maar B, Schulz V (2000) Multigrid optimization in applications. J Comput Appl Math 120:67–84. doi:10.1016/S0377-0427(00)00304-6

    Article  MathSciNet  MATH  Google Scholar 

  • Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115

    Google Scholar 

  • Fister I, Fister Jr I, Zumer JB (2012) Memetic artificial bee colony algorithm for large-scale global optimization. In: Evolutionary Computation (CEC), 2012 I.E. Congress on. pp 1–8

  • Hellesland J (2011) Review and evaluation of effective length formulas

  • Hsieh S-T, Sun T-Y, Liu C-C, Tsai S-J (2008) Solving large scale global optimization using improved particle swarm optimizer. In: Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on. pp 1777–1784

  • Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures, Springer International Publishing, Switzerland, doi: 10.1007/978-3-319-05549-7

  • Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75. doi:10.1016/j.advengsoft.2014.08.003

    Article  Google Scholar 

  • Kaveh A, Ilchi Ghazaan M (2015) Optimal design of dome tr uss structures with dynamic frequency constraints. Struct Multidiscip Optim. doi:10.1007/s00158-015-1357-2

    Google Scholar 

  • Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12. doi:10.1016/j.advengsoft.2014.01.002

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2011) Optimization of large-scale truss structures using charged system search. Int J Optim Civ Eng 15–28

  • Lagaros ND (2013) A general purpose real-world structural design optimization computing platform. Struct Multidiscip Optim 49:1047–1066. doi:10.1007/s00158-013-1027-1

    Article  Google Scholar 

  • Mazzoni S, McKenna F, Scott M (2006) OpenSees command language manual

  • Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimization using evolution strategies and neural networks. Comput Methods Appl Mech Eng 156:309–333

    Article  MATH  Google Scholar 

  • Patnik SN, Coroneos RM, Hopkins DA (1997) A cascade optimization strategy for solution of difficult design problems. Int J Numer Methods Eng 40:2257–2266. doi:10.1002/(SICI)1097-0207(19970630)40:12<2257::AID-NME160>3.0.CO;2-6

    Article  MATH  Google Scholar 

  • Saka, M. P. and OH (2009) Adaptive harmony search algorithm for design code optimization of steel structures. Springer Berlin Heidelberg, Berlin, Heidelberg

  • Sarma KC, Adeli H (2002) Life-cycle cost optimization of steel structures. Int J Numer Methods Eng 55:1451–1462. doi:10.1002/nme.549

    Article  MATH  Google Scholar 

  • Schulz V, Book HG (1997) Partially reduced sqp methods for large-scale nonlinear optimization problems. Nonlinear Anal Theory Methods Appl 30:4723–4734. doi:10.1016/S0362-546X(97)00198-3

    Article  MathSciNet  MATH  Google Scholar 

  • Singh D, Agrawal S (2016) Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems. Appl Soft Comput 38:1040–1048

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, James BB, Dovi AR (1985) Structural optimization by multilevel decomposition. AIAA J 23:1775–1782. doi:10.2514/3.9165

    Article  MathSciNet  MATH  Google Scholar 

  • Sobieszczanski-Sobieski J, James BB, Riley MF (1987) Structural sizing by generalized, multilevel optimization. AIAA J 25:139–145. doi:10.2514/3.9593

    Article  Google Scholar 

  • Specification A (2005) Specification for structural steel buildings. ANSI/AISC

  • Talatahari S, Kaveh A (2015) Improved bat algorithm for optimum design of large-scale truss structures. Int J Optim Civil Eng 5:241–254

  • The MathWorks (2013) MATLAB, Natick, Massachusetts, USA

  • Wang Q, Arora JS (2007) Optimization of large-scale truss structures using sparse SAND formulations. Int J Numer Methods Eng 69:390–407. doi:10.1002/nme.1773

    Article  MATH  Google Scholar 

  • Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative coevolution. Inf Sci (Ny) 178:2985–2999

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., BolandGerami, A. Optimal design of large-scale space steel frames using cascade enhanced colliding body optimization. Struct Multidisc Optim 55, 237–256 (2017). https://doi.org/10.1007/s00158-016-1494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1494-2

Keywords

Navigation