Skip to main content
Log in

Simultaneous optimization of piezoelectric actuator topology and polarization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article addresses the problem of piezoelectric actuator design for active structural vibration control. The topology optimization method using the Piezoelectric Material with Penalization and Polarization (PEMAP-P) model is employed in this work to find the optimum actuator layout and polarization profile simultaneously. A coupled finite element model of the structure is derived assuming a two-phase material, and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The optimization of the layout and poling direction of embedded in-plane piezoelectric actuators are carried out using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the polarization profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allik H, Hughes TJ (1970) Finite element method for piezoelectric vibration. Int J Numer Methods Eng 2(2):151–157

    Article  Google Scholar 

  • Bartels RH, Stewart GW (1972) Solution of the matrix equation ax + xb = c [f4]. Commun ACM 15(9):820–826

    Article  MATH  Google Scholar 

  • Becker J, Fein O, Maess M, Gaul L (2006) Finite element-based analysis of shunted piezoelectric structures for vibration damping. Comput Struct 84(31):2340–2350

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O, Bendsøe MP, Sigmund O (2004) Topology optimization by distribution of isotropic material. Springer, Berlin

    Book  MATH  Google Scholar 

  • Carbonari RC, Silva EC, Nishiwaki S (2007) Optimum placement of piezoelectric material in piezoactuator design. Smart Mater Struct 16(1):207

    Article  Google Scholar 

  • Chen PJ, Montgomery ST (1980) A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics 23(1):199–207

    Article  Google Scholar 

  • Donoso A, Bellido J (2009) Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Struct Multidiscip Optim 38(4):347–356

    Article  MathSciNet  MATH  Google Scholar 

  • Donoso A, Sigmund O (2016) Topology optimization of piezo modal transducers with null-polarity phases. Struct Multidiscip Optim 53(2):193–203

    Article  Google Scholar 

  • Gawronski W (2004) Advanced structural dynamics and active control of structures. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  • Gonçalves JF, Fonseca JSO, Silveira OAA (2016) A controllability-based formulation for the topology optimization of smart structures. Smart Structures and Systems 17(5):773–793

    Article  Google Scholar 

  • Gonçalves JF, De Leon DM, Perondi EA (2017) Topology optimization of embedded piezoelectric actuators considering control spillover effects. J Sound Vib 388:20–41

    Article  Google Scholar 

  • Ha Y, Cho S (2006) Design sensitivity analysis and topology optimization of eigenvalue problems for piezoelectric resonators. Smart Mater Struct 15(6):1513

    Article  Google Scholar 

  • Hać A, Liu L (1993) Sensor and actuator location in motion control of flexible structures. J Sound Vib 167(2):239–261

    Article  MATH  Google Scholar 

  • Hammarling S (1991) Numerical solution of the discrete-time, convergent, non-negative definite lyapunov equation. Systems & Control Letters 17(2):137–139

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola, New York.

    Google Scholar 

  • Irschik H (2002) A review on static and dynamic shape control of structures by piezoelectric actuation. Eng Struct 24(1):5–11

    Article  Google Scholar 

  • Kang Z, Wang R, Tong L (2011) Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput Methods Appl Mech Eng 200(13):1467–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Kim TS, Kim YY (2000) Mac-based mode-tracking in structural topology optimization. Comput Struct 74 (3):375–383

    Article  Google Scholar 

  • Kiyono CY, Silva ECN, Reddy J (2012) Design of laminated piezocomposite shell transducers with arbitrary fiber orientation using topology optimization approach. Int J Numer Methods Eng 90(12):1452–1484

    Article  MATH  Google Scholar 

  • Kögl M, Silva EC (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14(2):387

    Article  Google Scholar 

  • Leleu S, Abou-Kandil H, Bonnassieux Y (2000) Piezoelectric actuators and sensors location for active control of flexible structures. In: Proceedings of the 17th IEEE instrumentation and measurement technology conference, 2000. IMTC 2000, vol 2. IEEE, pp 818–823

  • Lerch R (1990) Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans Ultrason Ferroelectr Freq Control 37(3):233–247

    Article  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167

    Article  MathSciNet  Google Scholar 

  • Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21(18):1851–1865

    Article  Google Scholar 

  • Meitzler A, Tiersten H, Warner A, Berlincourt D, Couqin G, Welsh F III (1988) IEEE Standard on piezoelectricity. ANSI/IEEE, std. 176-1987

  • Middleton RH, Goodwin GC (1990) Digital control and estimation: a unified approach. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  • Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652

    Article  Google Scholar 

  • Penzl T (1998) Numerical solution of generalized lyapunov equations. Adv Comput Math 8(1):33–48

    Article  MathSciNet  MATH  Google Scholar 

  • Preumont A (2011) Vibration control of active structures: an introduction, vol 179. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  • Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184

    Article  MathSciNet  Google Scholar 

  • Rubio WM, Silva EC, Paulino GH (2009) Toward optimal design of piezoelectric transducers based on multifunctional and smoothly graded hybrid material systems. J Intell Mater Syst Struct 20(14):1725–1746

    Article  Google Scholar 

  • Ruiz D, Bellido J, Donoso A (2016) Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct Multidiscip Optim 53(4):715–730

    Article  MathSciNet  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidiscip Optim 8(4):207–227

    Article  Google Scholar 

  • Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using topology optimization. Smart Mater Struct 8(3):350

    Article  Google Scholar 

  • Silveira OAA, Fonseca JSO, Santos IF (2015) Actuator topology design using the controllability gramian. Struct Multidiscip Optim 51(1):145–157

    Article  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  • Tsai T, Cheng C (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686

    Article  MathSciNet  MATH  Google Scholar 

  • Wein F, Kaltenbacher M, Bänsch E, Leugering G, Schury F (2009) Topology optimization of a piezoelectric-mechanical actuator with single-and multiple-frequency excitation. Int J Appl Electromagn Mech 30(3, 4):201–221

    Google Scholar 

  • Wu B, Xu Z, Li Z (2007) A note on computing eigenvector derivatives with distinct and repeated eigenvalues. Commun Numer Methods Eng 23(3):241–251

    Article  MathSciNet  MATH  Google Scholar 

  • Yin L, Ananthasuresh G (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62

    Article  Google Scholar 

  • Zuo W, Saitou K (2017) Multi-material topology optimization using ordered simp interpolation. Struct Multidiscip Optim 55(2):477–491

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Brazilian agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano F. Gonçalves.

Additional information

Responsible Editor: Seonho Cho

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, J.F., De Leon, D.M. & Perondi, E.A. Simultaneous optimization of piezoelectric actuator topology and polarization. Struct Multidisc Optim 58, 1139–1154 (2018). https://doi.org/10.1007/s00158-018-1957-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1957-8

Keywords

Navigation