Skip to main content
Log in

Density based topology optimization of turbulent flow heat transfer systems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the constraints are obtained with the help of automatic differentiation applied on the discrete system without any simplifying assumptions. Thus, as demonstrated in earlier works of the authors, the sensitivities are exact to machine precision. The framework is applied to the optimization of 2D and 3D problems. Comparison between the simplified 2D setup and the full 3D optimized results is provided. A comparative study is also provided between designs optimized for laminar and turbulent flows. The comparisons highlight the importance and the benefits of full 3D optimization and including turbulence modeling in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aage N, Lazarov B (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505

    Article  MathSciNet  MATH  Google Scholar 

  • Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35(2):175–180. https://doi.org/10.1007/s00158-007-0128-0

    Article  MathSciNet  MATH  Google Scholar 

  • Aage N, Andreassen E, Lazarov B (2015) Topology optimization using petsc: An easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572

    Article  MathSciNet  Google Scholar 

  • Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.013. http://www.sciencedirect.com/science/article/pii/S0017931015307365

    Article  Google Scholar 

  • Amstutz S (2005) The topological asymptotic for the navier-stokes equations. Esaim-control Optim Calc Var 11(3):401–425. https://doi.org/10.1051/cocv:2005012

    Article  MathSciNet  MATH  Google Scholar 

  • Arquis E, Caltagirone JP (1984) Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieux poreux: application à la convection naturelle. In: C.R. Acad. Sci., Paris II, vol 299, pp 1–4

  • Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern Software Tools in Scientific Computing. Birkhȧuser Press, pp 163–202

  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2017a) PETSc users manual. Technical Report ANL-95/11 - Revision 3.8, Argonne National Laboratory. http://www.mcs.anl.gov/petsc

  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2017b) PETSc Web page. http://www.mcs.anl.gov/petsc

  • Bendsøe MP, Sigmund O (2003) Topology Optimization - Theory, Methods and Applications. Springer Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • CoDiPack (2016) code differentiation package. http://www.scicomp.uni-kl.de/software/codi/. Accessed: 2016-10-18

  • Dede E (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference

  • Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov B (2018) Topology optimization of turbulent flows. Comput Methods Appl Mech Eng 331:363 – 393. https://doi.org/10.1016/j.cma.2017.11.029. https://www.sciencedirect.com/science/article/pii/S0045782517307478

    Article  MathSciNet  Google Scholar 

  • Ferziger JH, Peric M (2001) Computational Methods for Fluid Dynamics. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(3): 181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives : principles and techniques of algorithmic differentiation. SIAM, Bangkok

    Book  MATH  Google Scholar 

  • Guillaume P, Idris K (2004) Topological sensitivity and shape optimization for the stokes equations. Siam J Control Optim 43(1):1–31. https://doi.org/10.1137/S0363012902411210

    Article  MathSciNet  MATH  Google Scholar 

  • Hogan RJ (2014) Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans Math Softw 40(4):26

    Article  MathSciNet  MATH  Google Scholar 

  • Koga AA, Lopes ECC, Nova HFV, de Lima CR, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64(0):759–772

    Article  Google Scholar 

  • Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961

    Article  MathSciNet  Google Scholar 

  • Matsumori T, Kondoh T, Kawamoto A, Nomura T (2013) Topology optimization for fluid-thermal interaction problems under constant input power. Struct Multidiscip Optim 47(4):571–581. https://doi.org/10.1007/s00158-013-0887-8

    Article  MATH  Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. Aiaa J 32:1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  • Nørgaard SA, Sagebaum M, Gauger NR, Lazarov B (2017) Applications of automatic differentiation in topology optimization. Struct Multidiscip Optim:1–12

  • Olesen L, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state navier-stokes flow. Int J Numer Methods Eng 65(7):975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58(8):861–877

    Article  MathSciNet  MATH  Google Scholar 

  • Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere

  • Pietropaoli M, Ahlfeld R, Montomoli F, Ciani A, D’Ercole M (2017) Design for additive manufacturing: Internal channel optimization. J Eng Gas Turbines Power 139(10):102,101–102:101–8

    Article  Google Scholar 

  • Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice boltzmann method. Struct Multidiscip Optim 34(6):507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. Recherche Aerospatiale (1):5–21

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Versteeg H, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Wilcox D (2006) Turbulence Modeling for CFD. DCW Industries, Incorporated

  • Wilcox D (2008) Formaulation of the k-ω Turbulence Model Revisited. AIAA J 46:2823–2838. https://doi.org/10.2514/1.36541

    Article  Google Scholar 

  • Yaji K, Yamada T, Kubo S, Izui K, Nishiwaki S (2015) A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions. Int J Heat Mass Transf 81: 878–888

    Article  Google Scholar 

  • Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2016) Topology optimization in thermal-fluid flow using the lattice boltzmann method. J Comput Phys 307:355–377

    Article  MathSciNet  MATH  Google Scholar 

  • Zymaris AS, Papadimitriou DI, Giannakoglou KC, Othmer C (2009) Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Comput Fluids 38(8):1528–1538

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the TopTen project sponsored by the Danish Council for Independent Research (DFF-4005-00320). During the final part, the work of the last author was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumer B. Dilgen.

Additional information

Sumer B. Dilgen and Cetin B. Dilgen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilgen, S.B., Dilgen, C.B., Fuhrman, D.R. et al. Density based topology optimization of turbulent flow heat transfer systems. Struct Multidisc Optim 57, 1905–1918 (2018). https://doi.org/10.1007/s00158-018-1967-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1967-6

Keywords

Navigation