Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2018

13.04.2018 | RESEARCH PAPER

Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects

verfasst von: Ji Liu, Quhao Li, Shutian Liu, Liyong Tong

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gyroscopic effects are essential features for vibration analysis and design of rotating structures due to the variation of coordinate system and the presence of inertia force. The purpose of this study is to present a new topology optimization method for designing rotating beam cross-section with gyroscopic effects. Based on the Giavotto beam theory and Hamilton’s principle, the governing motion equations of a rotating beam with an arbitrary geometry section are derived first, and then the dynamic finite element models are formulated. The eigensolution of the rotating beam has complex eigenvalues due to the gyroscopic terms in the governing equations, and this work mainly concerns with the steady rotating state, in which the real parts of all complex eigenvalues equal to zero. Topology optimization models of the beam cross-section are formulated in the variable density frame and the objective is to maximize the fundamental eigenfrequency and the gap between two consecutive eigenfrequencies. In order to alleviate the non-differentiability of min-max problems, the Kreisselmeier-Steinhauser function is used to approximate the objective function. The sensitivities of eigenfrequencies with respect to design variables are derived in the complex space. Numerical examples show that the angular velocity has a significant influence on the optimal topology of the rotating beam cross-section, and also validate the effectiveness and necessity of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRefMATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRefMATH
Zurück zum Zitat Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef
Zurück zum Zitat Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94:3278–3289CrossRef Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94:3278–3289CrossRef
Zurück zum Zitat Chen W, Keer L (1993) Transverse vibrations of a rotating twisted Timoshenko beam under axial loading. ASME Journal of Vibration and Acoustics 115:285–294CrossRef Chen W, Keer L (1993) Transverse vibrations of a rotating twisted Timoshenko beam under axial loading. ASME Journal of Vibration and Acoustics 115:285–294CrossRef
Zurück zum Zitat Chen TY, Wang BP (1993) Optimum design of rotor-bearing systems with eigenvalue constraints. ASME. J Eng Gas Turbines Power 115:256–260CrossRef Chen TY, Wang BP (1993) Optimum design of rotor-bearing systems with eigenvalue constraints. ASME. J Eng Gas Turbines Power 115:256–260CrossRef
Zurück zum Zitat Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502MathSciNetCrossRefMATH Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502MathSciNetCrossRefMATH
Zurück zum Zitat Donoso A, Sigmund O (2004) Topology optimization of multiple physics problems modelled by Poissons equation. Latin American Journal of Solids and Structures 1:169–184 Donoso A, Sigmund O (2004) Topology optimization of multiple physics problems modelled by Poissons equation. Latin American Journal of Solids and Structures 1:169–184
Zurück zum Zitat Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110MathSciNetCrossRefMATH Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110MathSciNetCrossRefMATH
Zurück zum Zitat Gans HD, Anderson WJ (1991) Structural optimization incorporating centrifugal and Coriolis effects. AIAA J 29:1743–1750CrossRefMATH Gans HD, Anderson WJ (1991) Structural optimization incorporating centrifugal and Coriolis effects. AIAA J 29:1743–1750CrossRefMATH
Zurück zum Zitat Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli G et al (1983) Anisotropic beam theory and applications. Comput Struct 16:403–413CrossRefMATH Giavotto V, Borri M, Mantegazza P, Ghiringhelli G, Carmaschi V, Maffioli G et al (1983) Anisotropic beam theory and applications. Comput Struct 16:403–413CrossRefMATH
Zurück zum Zitat Gunjal S, Dixit U (2007) Vibration analysis of shape-optimized rotating cantilever beams. Eng Optim 39:105–123CrossRef Gunjal S, Dixit U (2007) Vibration analysis of shape-optimized rotating cantilever beams. Eng Optim 39:105–123CrossRef
Zurück zum Zitat Gupta SD, Rajamohan V (2014) Segment optimization of a rotating multilayer sandwich beam. Journal of Sandwich Structures & Materials 16:148–172CrossRef Gupta SD, Rajamohan V (2014) Segment optimization of a rotating multilayer sandwich beam. Journal of Sandwich Structures & Materials 16:148–172CrossRef
Zurück zum Zitat Huang CL, Lin WY, Hsiao KM (2010) Free vibration analysis of rotating Euler beams at high angular velocity. Comput Struct 88:991–1001CrossRef Huang CL, Lin WY, Hsiao KM (2010) Free vibration analysis of rotating Euler beams at high angular velocity. Comput Struct 88:991–1001CrossRef
Zurück zum Zitat Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986CrossRef Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986CrossRef
Zurück zum Zitat Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37:477–493CrossRefMATH Kim YY, Kim TS (2000) Topology optimization of beam cross sections. Int J Solids Struct 37:477–493CrossRefMATH
Zurück zum Zitat Kim TS, Kim YY (2002) Multiobjective topology optimization of a beam under torsion and distortion. AIAA J 40:376–381CrossRef Kim TS, Kim YY (2002) Multiobjective topology optimization of a beam under torsion and distortion. AIAA J 40:376–381CrossRef
Zurück zum Zitat Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70:47–61MathSciNetCrossRefMATH Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70:47–61MathSciNetCrossRefMATH
Zurück zum Zitat Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index, IFAC Symp. Computer Aided Design of Control Systems, Zurich, Switzerland Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index, IFAC Symp. Computer Aided Design of Control Systems, Zurich, Switzerland
Zurück zum Zitat Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620CrossRef
Zurück zum Zitat Li L (2008) Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties: Georgia Institute of. Technology Li L (2008) Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties: Georgia Institute of. Technology
Zurück zum Zitat Li L, Hu Y, Wang X (2012) A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech Syst Signal Process 30:61–77CrossRef Li L, Hu Y, Wang X (2012) A parallel way for computing eigenvector sensitivity of asymmetric damped systems with distinct and repeated eigenvalues. Mech Syst Signal Process 30:61–77CrossRef
Zurück zum Zitat Li Q, Chen W, Liu S, Tong L (2016) Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim 54:971–984MathSciNetCrossRef Li Q, Chen W, Liu S, Tong L (2016) Structural topology optimization considering connectivity constraint. Struct Multidiscip Optim 54:971–984MathSciNetCrossRef
Zurück zum Zitat Li Y, Zhu JH, Zhang WH, Wang L (2018) Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method. Struct Multidiscip Optim 57:1251–1266 Li Y, Zhu JH, Zhang WH, Wang L (2018) Structural topology optimization for directional deformation behavior design with the orthotropic artificial weak element method. Struct Multidiscip Optim 57:1251–1266
Zurück zum Zitat Liu S, An X, Jia H (2008) Topology optimization of beam cross-section considering warping deformation. Struct Multidiscip Optim 35:403–411CrossRef Liu S, An X, Jia H (2008) Topology optimization of beam cross-section considering warping deformation. Struct Multidiscip Optim 35:403–411CrossRef
Zurück zum Zitat Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Multidiscip Optim 1:11–17CrossRef Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Multidiscip Optim 1:11–17CrossRef
Zurück zum Zitat Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11CrossRef Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11CrossRef
Zurück zum Zitat Raspanti C, Bandoni J, Biegler L (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209CrossRef Raspanti C, Bandoni J, Biegler L (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209CrossRef
Zurück zum Zitat Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Structural optimization 8:207–227CrossRef Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Structural optimization 8:207–227CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH
Zurück zum Zitat Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622CrossRefMATH Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622CrossRefMATH
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetCrossRefMATH
Zurück zum Zitat Yi S, Cheng G, Xu L (2016) Stiffness design of heterogeneous periodic beam by topology optimization with integration of commercial software. Comput Struct 172:71–80CrossRef Yi S, Cheng G, Xu L (2016) Stiffness design of heterogeneous periodic beam by topology optimization with integration of commercial software. Comput Struct 172:71–80CrossRef
Zurück zum Zitat Yokoyama T (1988) Free vibration characteristics of rotating Timoshenko beams. Int J Mech Sci 30:743–755CrossRefMATH Yokoyama T (1988) Free vibration characteristics of rotating Timoshenko beams. Int J Mech Sci 30:743–755CrossRefMATH
Zurück zum Zitat Yoo H, Shin S (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212:807–828CrossRef Yoo H, Shin S (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212:807–828CrossRef
Zurück zum Zitat Yoo HH, Cho JE, Chung J (2006) Modal analysis and shape optimization of rotating cantilever beams. J Sound Vib 290:223–241CrossRef Yoo HH, Cho JE, Chung J (2006) Modal analysis and shape optimization of rotating cantilever beams. J Sound Vib 290:223–241CrossRef
Zurück zum Zitat Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef
Zurück zum Zitat Zhu J-H, Li Y, Zhang W-H, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidiscip Optim 53:893–906MathSciNetCrossRef Zhu J-H, Li Y, Zhang W-H, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidiscip Optim 53:893–906MathSciNetCrossRef
Metadaten
Titel
Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects
verfasst von
Ji Liu
Quhao Li
Shutian Liu
Liyong Tong
Publikationsdatum
13.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2018
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-1974-7

Weitere Artikel der Ausgabe 4/2018

Structural and Multidisciplinary Optimization 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.