Skip to main content

Advertisement

Log in

Derivation of a new free energy for biological membranes

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A new free energy for thin biomembranes depending on chemical composition, degree of order and membranal-bending deformations is derived in this paper. This is a result of constitutive and geometric assumptions at the three-dimensional level. The enforcement of a new symmetry group introduced in (Deseri et al., in preparation) and a 3D--2D dimension reduction procedure are among the ingredients of our methodology. Finally, the identification of the lower order term of the energy (i.e. the membranal contribution) on the basis of a bottom-up approach is performed; this relies upon standard statistical mechanics calculations. The main result is an expression of the biomembrane free energy density, whose local and non-local counterparts are weighted by different powers of the bilayer thickness. The resulting energy exhibits three striking aspects:

  1. (i)

    the local (purely membranal) energy counterpart turns out to be completely determined through the bottom-up approach mentioned above, which is based on experimentally available information on the nature of the constituents;

  2. (ii)

    the non-local energy terms, that spontaneously arise from the 3D--2D dimension reduction procedure, account for both bending and non-local membranal effects;

  3. (iii)

    the non-local energy contributions turn out to be uniquely determined by the knowledge of the membranal energy term, which in essence represents the only needed constitutive information of the model. It is worth noting that the coupling among the fields appearing as independent variables of the model is not heuristically forced, but it is rather consistently delivered through the adopted procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Almeida R.F.M., Borst J.W., Fedorov A., Prieto M., Visser A.J.W.G.: Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys. J. 93, 539–553 (2007)

    Article  Google Scholar 

  2. Ayton G.S., McWhirter J.L., McMurtry P., Voth G.A.: Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. Biophys. J. 88, 3855–3869 (2005)

    Article  Google Scholar 

  3. Babaa T., Toshimab Y., Minamikawaa H., Hatoa M., Suzukic K., Kamo N.: Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. BBA Biomembr. 1421(1), 91–102 (1999)

    Article  Google Scholar 

  4. Baesu E., Rudd R.E., Belak J., McElfresh M.: Continuum modeling of cell membranes. Int. J. Nonlinear Mech. 39(3), 369–377 (2004)

    Article  MATH  Google Scholar 

  5. Baumgart T., Das S., Webb W.W., Jenkins J.T.: Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89, 1067–1080 (2005)

    Article  Google Scholar 

  6. Baumgart T., Webb W.W., Hess S.T.: Imaging coexisting domains in biomembrane models coupling curvature and line tension. Nature 423, 821–824 (2003)

    Article  Google Scholar 

  7. Biscari P., Canevese S.M., Napoli G.: Impermeability effects in three-dimensional vesicles. J. Phys. A 37, 6859–6874 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Canham P.B.: The minimum energy as possible explanation of the biconcaveshape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Article  Google Scholar 

  9. Capovilla R., Guven J.: Helfrich-Canham bending energy as a constrained nonlinear sigma model. J. Phys. A 38, 2593–2597 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cevc G., Marsh D.: Phospholipid Bilayers: Physical Principles and Models. Wiley, New York (1987)

    Google Scholar 

  11. Chen C.-M., Higgs P.G., MacKintosh F.C.: Theory of fission for two-component lipid vesicles. Phys. Rev. Lett. 79(8), 1579–1582 (1997)

    Article  Google Scholar 

  12. Deseri, L., Healey, T.J., Paroni, R.: Material gamma-limits for the energetics of biological in-plane fluid films (in preparation)

  13. Deseri, L., Paroni, R., Piccioni, M.D., Zurlo, G.: On the free energy of liposomes. In: XVIII Congresso Nazionale AIMETA, Brescia, Italy, 11–14 September 2007

  14. Deseri, L., Piccioni, M.D., Zurlo, G.: in preparation

  15. Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K., Gratton E.: Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001)

    Google Scholar 

  16. Do Carmo M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)

    MATH  Google Scholar 

  17. Erriu G., Ladu M., Onnis S., Tang J.H., Chang W.K.: Modifications induced in lipid multilayers by 241Am-particles. Lett. Al Nuovo Cimento Ser. 2 40(17), 527–532 (1984)

    Article  Google Scholar 

  18. Evans E.A., Skalak R.: Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton (1980)

    Google Scholar 

  19. Fung Y.C.: Theoretical considerations of the elasticity of red blood cells and small blood vessels. Proc. Fed. Am. Soc. Exp. Biol. 25(6), 1761–1772 (1966)

    MathSciNet  Google Scholar 

  20. Fung Y.C., Tong P.: Theory of sphering of red blood cells. Biophys. J. 8, 175–198 (1968)

    Google Scholar 

  21. Goldstein R.E., Leibler S.: Structural phase transitions of interacting membranes. Phys. Rev. A 40(2), 1025–1035 (1989)

    Article  Google Scholar 

  22. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  23. Gurtin M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    Google Scholar 

  24. Gurtin M.E., Murdoch A.I.: Continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  25. Healey, T.J.: Phase transitions in giant unilamellar vescicles. Private communication (2007)

  26. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch [C] 28(11), 693–703 (1973)

    Google Scholar 

  27. Hilgers M.G., Pipkin A.C.: Bending energy of highly elastic membranes. Q. Appl. Math. 50(2), 389–400 (1992)

    MATH  MathSciNet  Google Scholar 

  28. Hilgers M.G., Pipkin A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45(1), 57–75 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hilgers M.G., Pipkin A.C.: Energy-minimizing deformations of elastic sheets with bending stiffness. J. Elast. 31(2), 125–139 (1993)

    MATH  MathSciNet  Google Scholar 

  30. Hill T.: An Introduction to Statistical Thermodynamics. Dover, New York (1986)

    Google Scholar 

  31. Israelachvili J.N.: Intermolecular and Surface Forces. Academic Press, New York (1991)

    Google Scholar 

  32. Julicher F., Lipowsky R.: Domain-induced budding of vesicles. Phys. Rev. E 70(19), 2964–2967 (1993)

    Google Scholar 

  33. Julicher F., Lipowsky R.: Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53(3), 2670–2683 (1996)

    Article  Google Scholar 

  34. Kawakatsu T., Andelman A., Kawasaki K., Taniguchi T.: Phase transitions and shapes of two component membranes and vesicles I: strong segregation limit. J. Physiol. II (France) 4(8), 1333–1362 (1994)

    Article  Google Scholar 

  35. Keller J.B., Merchant G.J.: Flexural rigidity of a liquid surface. J. Stat. Phys. 63(5-6), 1039–1051 (1991)

    Article  MathSciNet  Google Scholar 

  36. Komura S., Shirotori H., Olmsted P.D., Andelman D.: Lateral phase separation in mixtures of lipids and cholesterol. Europhys. Lett. 67, 321–327 (2004)

    Article  Google Scholar 

  37. Koiter W.T.: On the nonlinear theory of thin elastic shells. Proc. K. Ned. Akad. Wet. B 69, 1–54 (1966)

    MathSciNet  Google Scholar 

  38. Lipowsky, R., Sackmann, E. (eds.): Handbook of Biological Physics—Structure and Dynamics of Membranes, vol. 1. Elsevier Science B.V., Amsterdam (1995)

  39. Murdoch A.I., Cohen C.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72, 61–89 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  40. Nagle, J.: An overwiew and some insight on liposomes. Private communication, April (2005)

  41. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 197–226 (1958)

    Article  MATH  Google Scholar 

  42. Onuki A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  43. Ou-Yang Z.C., Liu J.X., Xie Y.Z.: Geometric methods in the elastic theory of membranes in liquid cristal phases. World Scientific, Singapore (1999)

    Google Scholar 

  44. Rosso R., Virga E.G.: Squeezing and stretching of vesicles. J. Phys. A 33, 1459–1464 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Safran S.A.: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Westview Press, Boulder (2003)

    MATH  Google Scholar 

  46. Steigmann D.J.: Fluid Films with curvature Elasticity. Arch. Ration. Mech. Anal. 150, 127–152 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. Steigmann D.J.: Thin-plate theory for large elastic deformations. Int. J. Nonlinear Mech. 42(2), 233–240 (2007)

    Article  MathSciNet  Google Scholar 

  48. Stottrup B.L., Veatch S.L., Keller S.L.: Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys. J. 86, 2942–2950 (2004)

    Article  Google Scholar 

  49. Taniguchi T.: Shape deformation and phase separation dynamics of two-component vesicles. Phys. Rev. Lett. 76(23), 4444–4447 (1996)

    Article  Google Scholar 

  50. Tu, Z.C., Ou-Yang, Z.C.: Lipid membranes with free edges. Phys. Rev. E 68, 061915 (2003) [7 p.]

    Google Scholar 

  51. Veatch S.L., Keller S.L.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89(26), 268101-1–268101-4 (2002)

    Article  Google Scholar 

  52. Veatch S.L., Keller S.L.: Letter to the editor: a closer look at the canonical “Raft Mixture” in model membrane studies. Biophys. J. 84, 725–726 (2003)

    Google Scholar 

  53. Veatch S.L., Keller S.L.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003)

    Google Scholar 

  54. Veatch S.L., Polozov V.I., Gawrisch K., Keller S.L.: Liquid domains in vescicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922 (2004)

    Google Scholar 

  55. Zurlo, G.: Material and geometric phase transitions in biological membranes. Dissertation for the Fulfillment of the Doctorate of Philosophy in Structural Engineering and Continuum Mechanics [Deseri, L., Paroni, R., Marzano, S. (Advisors), Healey, T.J. (Co-Advisor)], University of Pisa (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Deseri.

Additional information

Communicated by T. Pence

L. Deseri gratefully acknowledges the support received by (i) the Cofin-PRIN 2005-MIUR Italian Grant Mathematical and numerical modelling and experimental investigations for advanced problems in continuum and structural mechanics, (ii) the Department of Theoretical and Applied Mechanics at Cornell University and (iii) the Center for Non-linear Analysis under the National Science Foundation Grant No. DMS 0635983 and the Department of Mathematical Sciences, Carnegie-Mellon University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deseri, L., Piccioni, M.D. & Zurlo, G. Derivation of a new free energy for biological membranes. Continuum Mech. Thermodyn. 20, 255–273 (2008). https://doi.org/10.1007/s00161-008-0081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-008-0081-1

Keywords

PACS

Navigation