Skip to main content
Log in

Some research perspectives in galloping phenomena: critical conditions and post-critical behavior

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper gives an overview of wind-induced galloping phenomena, describing its manifold features and the many advances that have taken place in this field. Starting from a quasi-steady model of aeroelastic forces exerted by the wind on a rigid cylinder with three degree-of-freedom, two translations and a rotation in the plane of the model cross section, the fluid–structure interaction forces are described in simple terms, yet suitable with complexity of mechanical systems, both in the linear and in the nonlinear field, thus allowing investigation of a wide range of structural typologies and their dynamic behavior. The paper is driven by some key concerns. A great effort is made in underlying strengths and weaknesses of the classic quasi-steady theory as well as of the simplistic assumptions that are introduced in order to investigate such complex phenomena through simple engineering models. A second aspect, which is crucial to the authors’ approach, is to take into account and harmonize the engineering, physical and mathematical perspectives in an interdisciplinary way—something which does not happen often. The authors underline that the quasi-steady approach is an irreplaceable tool, tough approximate and simple, for performing engineering analyses; at the same time, the study of this phenomenon gives origin to numerous problems that make the application of high-level mathematical solutions particularly attractive. Finally, the paper discusses a wide range of features of the galloping theory and its practical use which deserve further attention and refinements, pointing to the great potential represented by new fields of application and advanced analysis tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Piccardo G.: A methodology for the study of coupled aeroelastic phenomena. J. Wind Eng. Ind. Aerodyn. 48(2–3), 241–252 (1993)

    Google Scholar 

  2. Solari, G.: Gust-excited vibrations. In: Sockel, H. (ed.) Wind-Excited Vibrations of Structures, pp. 195–291. Springer, Wien (1994)

  3. Balendra T., Nathan G.K., Kang K.H.: Deterministic model for wind-induced oscillations of buildings. J. Eng. Mech. ASCE 115(1), 179–199 (1989)

    Google Scholar 

  4. Parkinson G.V., Smith J.D.: The square prism as an aeroelastic non-linear oscillator. Q. J. Mech. Appl. Math. 17, 225–239 (1964)

    MATH  Google Scholar 

  5. Novak M.: Aeroelastic galloping of prismatic bodies. J. Eng. Mech. Div. ASCE 95(EM1), 115–142 (1969)

    Google Scholar 

  6. Novak M., Davenport A.G.: Aeroelastic instability of prisms in turbulent flow. J. Eng. Mech. Div. ASCE 96(EM1), 17–39 (1970)

    Google Scholar 

  7. Païdouissis M.P., Price S.J., de Langre E.: Fluid–Structure Interactions—Cross-Flow Induced Instabilities. Cambridge University Press, New York (2011)

    Google Scholar 

  8. Blevins R.D.: Flow-Induced Vibration. 2nd edn. Krieger Publishing Company, Malabar (2001)

    Google Scholar 

  9. Bearman P.W., Gartshore I.S., Maull D.J., Parkinson G.V.: Experiments on flow-induced vibration of a square-section cylinder. J. Fluids Struct. 1, 19–34 (1987)

    ADS  Google Scholar 

  10. Slater, J.E.: Aeroelastic Instability of a Structural Angle Section. Ph.D. thesis, Department of Mechanical Engineering, University of British Columbia (1969)

  11. Blevins R.D., Iwan W.D.: The galloping response of a two-degree-of-freedom system. J. Appl. Mech. ASME 41, 1113–1118 (1974)

    ADS  Google Scholar 

  12. Yu P., Desai Y.M., Popplewell N., Shah A.H.: Three-degree-of-freedom model for Galloping. Part I: formulation and part II: solutions. J. Eng. Mech. ASCE 119(12), 2404–2448 (1993)

    Google Scholar 

  13. Wang J., Lilien J.-L.: Overhead electrical transmission line galloping. IEEE Trans. Power Deliv. 13(3), 909–916 (1998)

    Google Scholar 

  14. Stoyanoff S.: A unified approach for 3D stability and time domain response analysis with application of quasi-steady theory. J. Wind Eng. Ind. Aerodyn. 89, 1591–1606 (2001)

    Google Scholar 

  15. Gjelstrup H., Georgakis C.T.: A quasi-steady 3 degree-of-freedom model for the determination of the onset of bluff body galloping instability. J. Fluids Struct. 27, 1021–1034 (2011)

    ADS  Google Scholar 

  16. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3-4), 269–291 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Luongo A., Di Egidio A., Paolone A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82(31-32), 2705–2722 (2004)

    MathSciNet  Google Scholar 

  18. Luongo A.: A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures. Thin-Walled Struct. 48(10-11), 744–751 (2010)

    Google Scholar 

  19. Luongo A., Zulli D.: A paradigmatic system to study the transition from zero/Hopf to double-zero/Hopf bifurcation. Nonlinear Dyn. 70(1), 111–124 (2012)

    MATH  MathSciNet  Google Scholar 

  20. Martinelli L., Perotti F.: Numerical analysis of the non-linear dynamic behaviour of suspended cables under turbulent wind excitation. Int. J. Struct. Stab. Dyn. 1(2), 207–233 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Luongo A., Zulli D.: Parametric, external and self-excitation of a tower under turbulent wind flow. J. Sound Vib. 330, 3057–3069 (2011)

    ADS  Google Scholar 

  22. Abdelkefi A., Hajj M.R., Nayfeh A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70(2), 1355–1363 (2012)

    MathSciNet  Google Scholar 

  23. Belhaq M., Kirrou I., Mokni L.: Periodic and quasiperiodic galloping of a wind-excited tower under external excitation. Nonlinear Dyn. 74, 849–867 (2013)

    MATH  MathSciNet  Google Scholar 

  24. Dettmer W., Peric D.: A computational framework for fluid–rigid body interaction: finite element formulation and applications. Comput. Methods Appl. Mech. Eng. 195, 1633–1666 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  25. Yang J., Stern F.: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions. J. Comput. Phys. 231, 5029–5061 (2012)

    ADS  MATH  MathSciNet  Google Scholar 

  26. Sandstede B., Scheel A.: Hopf bifurcation from viscous shock waves. SIAM J. Math. Anal. 39(6), 2033–2052 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Madeo A., Djeran-Maigre I., Rosi G., Silvani C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Continuum Mech. Thermodyn. 25(2–4), 173–196 (2013)

    ADS  MathSciNet  Google Scholar 

  28. Kärnä, T.: Dynamic and Aeroelastic Action of Guy Cables. Ph.D. thesis, VTT, Technical Research Centre of Finland, Publications 18, Espoo, Finland (1984)

  29. Piccardo, G., Tubino, F.: Turbulence effects on lateral galloping of prismatic structures. In: Proceedings, 13th International Conference on Wind Engineering, ICWE13, Amsterdam, the Netherlands. Multi-Science Publishing Co. Ltd, Brentwood (2011)

  30. Freda, A.: Behaviour of Slender Structural Elements Having an Arbitrary Attitude in the Wind Field. PhD Thesis, University of Genoa (2005)

  31. Simiu E., Scanlan R.H.: Wind Effects on Structures. 3rd edn. Wiley, New York (1996)

    Google Scholar 

  32. Jones K.F.: Coupled vertical and horizontal galloping. J. Eng. Mech. ASCE 118(1), 92–107 (1992)

    Google Scholar 

  33. Luongo A., Piccardo G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2005)

    ADS  Google Scholar 

  34. Novak M., Tanaka H.: Effect of turbulence on galloping instability. J. Eng. Mech. Div. ASCE 100(EM1), 27–47 (1974)

    Google Scholar 

  35. Shuguo L., Qiusheng L., Guiqing L., Weilian Q.: An evaluation of onset wind velocity for 2-D coupled galloping oscillations of tower buildings. J. Wind Eng. Ind. Aerodyn. 50, 329–340 (1993)

    Google Scholar 

  36. Nikitas, N., Macdonald, J.H.G.: Misconceptions and generalizations of the Den Hartog galloping criterion. J. Eng. Mech. ASCE. 140(4), 04013005-1/11 (2013)

  37. Solari G., Pagnini L.C.: Gust buffeting and aeroelastic behaviour of poles and monotubular towers. J. Fluids Struct. 13, 877–905 (1999)

    ADS  Google Scholar 

  38. Matsumoto M., Shiraishi N., Kitazawa M., Knisely C., Shirato H., Kim Y., Tsujii M.: Aerodynamic behavior of inclined circular cylinders-cable aerodynamics. J. Wind Eng. Ind. Aerodyn. 33(1–2), 63–72 (1990)

    Google Scholar 

  39. Cheng S., Larose G.L., Savage M.G., Tanaka H., Irwin P.A.: Experimental study on the wind-induced vibration of a dry inclined cable—part I. Phenomena. J. Wind Eng. Ind. Aerodyn. 96, 2231–2253 (2008)

    Google Scholar 

  40. Carassale L., Freda A., Piccardo G.: Aeroelastic forces on yawed circular cylinders quasi-steady modelling and aerodynamic instability. Wind Struct. 8(5), 373–388 (2005)

    Google Scholar 

  41. Piccardo G., Carassale L., Freda A.: Critical conditions of galloping for inclined square cylinders. J. Wind Eng. Ind. Aerodyn. 99(6–7), 748–756 (2011)

    Google Scholar 

  42. Luongo A., Piccardo G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214(5), 915–940 (1998)

    ADS  Google Scholar 

  43. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  44. Martinelli, L., Perotti, F.: Numerical analysis of the dynamic behavior of cables under turbulent wind. In: Zingoni A. (ed.) Progress in Structural Engineering, Mechanics and Computation, pp. 341-345. Taylor & Francis Group, London (2004)

  45. Luongo A., Di Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41(1–3), 171–190 (2005)

    MATH  MathSciNet  Google Scholar 

  46. Luongo A., Piccardo G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008)

    MATH  MathSciNet  Google Scholar 

  47. Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems I. An algebraic method. Acta Mech. 174(1–2), 91–107 (2005)

    MATH  Google Scholar 

  48. Luongo A., Di Egidio A., Paolone A.: Qualitative analysis of classes of motion for multiresonant systems II. A geometrical method. Acta Mech. 174(1–2), 109–124 (2005)

    MATH  Google Scholar 

  49. Luongo A., Paolone A., Piccardo G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)

    MATH  Google Scholar 

  50. Luongo A., Di Egidio A., Paolone A.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)

    MATH  MathSciNet  Google Scholar 

  51. Gattulli V., Di Fabio F. Luongo A.: Simple and double Hopf bifurcations in aeroelastic oscillators with tuned mass dampers. J. Frankl. Inst. 338, 187–201 (2001)

    MATH  MathSciNet  Google Scholar 

  52. Pheinsusom P., Fujino Y., Ito M.: Galloping of tower-like structure with two closely spaced natural frequencies. J. Wind Eng. Ind. Aerodyn. 32, 189–198 (1989)

    Google Scholar 

  53. Luongo A., Di Fabio F.: Multimodal galloping of dense spectra structures. J. Wind Eng. Ind. Aerodyn. 48(2–3), 163–174 (1993)

    Google Scholar 

  54. CIGRE Task Force B2.11.06: State of the art of conductor galloping. CIGRE Technical Brochure 322 (2007)

  55. Le Diouron T., Fujino Y., Abe M.: Control of wind-induced self-excited oscillations by transfer of internal energy to higher modes of vibration. I: analysis in two degrees of freedom. J. Eng. Mech. ASCE 129(5), 514–525 (2003)

    Google Scholar 

  56. Luongo A., Paolone A.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14, 193–210 (1997)

    MATH  MathSciNet  Google Scholar 

  57. Gattulli V., Di Fabio F., Luongo A.: One to one resonant double Hopf bifurcation in aeroelastic oscillators with tuned mass dampers. J. Sound Vib. 262, 201–217 (2003)

    ADS  Google Scholar 

  58. Luongo A.: Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA J. 31, 1321–1328 (1993)

    ADS  MATH  Google Scholar 

  59. Luongo A.: Eigensolutions of perturbed nearly defective matrices. J. Sound Vib. 185(3), 377–395 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  60. Luongo A., Paolone A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19, 133–156 (1999)

    MATH  MathSciNet  Google Scholar 

  61. Gattulli V., Di Fabio F., Luongo A.: Nonlinear tuned mass damper for self-excited oscillations. Wind Struct. 7(4), 251–264 (2004)

    Google Scholar 

  62. McConnel K.G., Chang C.N.: A study of the axial–torsional coupling effect on a sagged transmission line. Exp. Mech. 26(4), 324–329 (1986)

    Google Scholar 

  63. Diana G., Bruni S., Cheli F., Fossati F., Manenti A.: Dynamic analysis of the transmission line crossing ‘Lago de Maracaibo’. J. Wind Eng. Ind. Aerodyn. 74-76, 977–986 (1998)

    Google Scholar 

  64. Lu C.L., Perkins N.C.: Nonlinear spatial equilibria and stability of cables under uni-axial torque and thrust. J. Appl. Mech. ASME 61(4), 879–886 (1994)

    ADS  MATH  Google Scholar 

  65. Luongo A., Zulli D., Piccardo G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2(4), 675–694 (2007)

    Google Scholar 

  66. Luongo A., Zulli D., Piccardo G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15–16), 1003–1014 (2009)

    Google Scholar 

  67. Luongo A., Zulli D., Piccardo G.: Analytical and numerical approaches to nonlinear galloping of internally-resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)

    ADS  Google Scholar 

  68. Yan Z., Yan Z., Li Z., Tan T.: Nonlinear galloping of internally resonant iced transmission lines considering eccentricity. J. Sound Vib. 331(15), 3599–3616 (2012)

    ADS  Google Scholar 

  69. Yan Z., Li Z., Savory E., Lin W.E.: Galloping of a single iced conductor based on curved-beam theory. J. Wind Eng. Ind. Aerodyn. 123(A), 77–87 (2013)

    Google Scholar 

  70. Yan Z., Savory E., Li Z., Lin W.E.: Galloping of iced quad-conductors bundles based on curved beam theory. J. Sound Vib. 333, 1657–1670 (2014)

    ADS  Google Scholar 

  71. Li Q.S., Fang J.Q., Jeary A.P.: Evaluation of 2D coupled galloping oscillations of slender structures. Comput. Struct. 66, 513–523 (1998)

    MATH  Google Scholar 

  72. Abdel-Rohman M.: Effect of unsteady wind flow on galloping of tall prismatic structures. Nonlinear Dyn. 26, 231–252 (2001)

    Google Scholar 

  73. Lumbantobing H., Haaker T.I.: On the parametric excitation of some nonlinear aeroelastic oscillators. J. Fluids Struct. 19, 221–237 (2004)

    ADS  Google Scholar 

  74. Piccardo, G., Tubino, F.: Turbulence effects on lateral galloping of prismatic structures. In: Proceedings of 13th International Conference on Wind Engineering—ICWE 11, Amsterdam, The Netherlands (2011)

  75. Zulli D., Luongo A.: Bifurcation and stability of a two-tower system under wind-induced parametric, external and self-excitation. J. Sound Vib. 331(2), 365–383 (2012)

    ADS  Google Scholar 

  76. Kirrou I., Mokni L., Belhaq M.: On the quasi periodic galloping of a wind-excited tower. J. Sound Vib. 332, 4059–4066 (2013)

    ADS  Google Scholar 

  77. Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2012)

    MathSciNet  Google Scholar 

  78. Wang L., Xu Y.L.: Wind-rain-induced vibration of cable: an analytical model (1). Int. J. Solids Struct. 40, 1265–1280 (2003)

    MATH  Google Scholar 

  79. Lepidi, M., Piccardo, G.: Aeroelastic stability of a symmetric multi-body section model. Meccanica. doi:10.1007/s11012-014-0005-z (2014)

  80. Luongo A., D’Annibale F.: Linear stability analysis of multiparameter dynamical systems via a numerical-perturbation approach. AIAA J. 49(9), 2047–2056 (2011)

    ADS  Google Scholar 

  81. Robertson I., Li L., Sherwin S.J., Bearman P.W.: A numerical study of rotational and transverse galloping rectangular bodies. J. Fluids Struct. 17, 681–699 (2003)

    ADS  Google Scholar 

  82. Andrianne, T.: Experimental and Numerical Investigations of the Aeroelastic Stability of Bluff Structures, PhD Thesis, University of Liège (2012)

  83. Pagnini L.C., Solari G.: Damping measurements of steel poles and tubular towers. Eng. Struct. 23, 1085–1095 (2001)

    Google Scholar 

  84. Ma, W.-Y., Gu, M.: Experimental investigation and theoretical analysis on galloping of iced conductors. In: 13th International Conference on Wind Engineering—ICWE 11, Amsterdam, The Netherlands (2011)

  85. Desai Y.M., Yu P., Popplewell N., Shah A.H.: Finite element modelling of transmission line galloping. Comput. Struct. 57(3), 407–420 (1995)

    MATH  Google Scholar 

  86. Foti, F., Martinelli, L.: A corotational beam element to model suspended cables. In: Proceedings of 9th International Symposium on Cable Dynamics, Shanghai, China (2011)

  87. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    ADS  MATH  MathSciNet  Google Scholar 

  88. Gurung C.B., Yamaguchi H., Yukino T.: Identification of large amplitude wind-induced vibration of ice-accreted transmission lines based on field observed data. Eng. Struct. 24, 179–188 (2002)

    Google Scholar 

  89. Chabart O., Lilien J.L.: Galloping of electrical lines in wind tunnel facilities. J. Wind Eng. Ind. Aerodyn. 74-76, 967–976 (1998)

    Google Scholar 

  90. Keutgen R., Lilien J.-L.: Benchmark cases for galloping with results obtained from wind tunnel facilities—validation of a finite element model. IEEE Trans. Power Deliv. 15(1), 367–374 (2000)

    Google Scholar 

  91. Oiseth O., Ronnquist A., Sigbjornsson R.: Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. J. Wind. Eng. Ind. Aerodyn. 98, 730–741 (2010)

    Google Scholar 

  92. Cazzani A., Ruge P.: Numerical aspects of coupling strongly frequency dependent soil-fundation models with structural finite elements in the time domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Google Scholar 

  93. Cazzani A., Ruge P.: Rotor platforms on pile-groups running through resonance: a comparison between unbounded soil and soil-layers resting on a rigid bedrock. Soil Dyn. Earthq. Eng. 50, 151–161 (2013)

    Google Scholar 

  94. Cazzani A., Ruge P.: Symmetric matrix-valued transmitting boundary formulation in the time-domain for soil–structure interaction problems. Soil Dyn. Earthq. Eng. 57, 104–120 (2014)

    Google Scholar 

  95. Ibrahim R.A.: Nonlinear vibrations of suspended cables—part III: random excitation and interaction with fluid flow. Appl. Mech. Rev. 57(6), 515–549 (2004)

    ADS  Google Scholar 

  96. Bartoli G., Cluni F., Gusella V., Procino L.: Dynamics of cable under wind action: wind tunnel experimental analysis. J. Wind Eng. Ind. Aerody. 94, 259–273 (2006)

    Google Scholar 

  97. Carassale L., Piccardo G.: Non-linear discrete models for the stochastic analysis of cables in turbulent wind. Int. J. Non-Linear Mech. 45(3), 219–231 (2010)

    ADS  Google Scholar 

  98. Mannini, C., Marra, A.M., Massai, T., Bartoli, G.: VIV and galloping interaction for a 3:2 rectangular cylinder. In: Proceedings of EACWE 2013, Cambridge, UK (2013)

  99. Corless, R.M.: Mathematical Modelling of the Combined Effects of Vortex-Induced Vibration and Galloping, PhD Thesis, The University of British Columbia (1986)

  100. Macdonald, J.H.G., Larose, G.L.: Two degree-of-freedom inclined cable galloping—part 1: general formulation and solution for perfectly tuned system; part 2: analysis and prevention for arbitrary frequency ratio. J. Wind Eng. Ind. Aerodyn. 96, 291–307, 308–326 (2008)

  101. Matsumoto M., Yagi T., Hatsuda H., Shima T., Tanaka M., Naito H.: Dry galloping characteristics and its mechanism of inclined/yawed cables. J. Wind Eng. Ind. Aerodyn. 98, 317–327 (2010)

    Google Scholar 

  102. Zuo D., Jones N.P., Main J.A.: Field observation of vortex- and rain-wind-induced stay-cable vibrations in a three-dimensional environment. J. Wind Eng. Ind. Aerodyn. 96, 1124–1133 (2008)

    Google Scholar 

  103. Zuo D., Jones N.P.: Interpretation of field observations of wind- and rain-wind-induced stay cable vibrations. J. Wind Eng. Ind. Aerodyn. 98, 73–87 (2010)

    Google Scholar 

  104. Wilde K., Witkowski W.: Simple model of rain-wind-induced vibrations of stayed cables. J. Wind Eng. Ind. Aerodyn. 91, 873–891 (2003)

    Google Scholar 

  105. Yamaguchi H.: Analytical study on growth mechanism of rain vibration of cables. J. Wind Eng. Ind. Aerodyn. 33, 73–80 (1990)

    Google Scholar 

  106. Gu M.: On wind–rain induced vibration of cables of cable-stayed bridges based on quasi-steady assumption. J. Wind Eng. Ind. Aerodyn. 97, 381–391 (2009)

    Google Scholar 

  107. Li S., Chen Z., Wu T., Kareem A.: Rain-wind-induced in-plane and out-of-plane vibrations of stay cables. J. Eng. Mech. ASCE 139(12), 1688–1698 (2013)

    Google Scholar 

  108. Du X., Gu M., Chen S.: Aerodynamic characteristics of an inclined and yawed circular cylinder with artificial rivulet. J. Fluids Struct. 43, 64–82 (2013)

    ADS  Google Scholar 

  109. FHWA-HRT: Wind-induced vibration of stay cables. Report No. FHWA-RD-05-083, HNTB Corporation, Boston, MA (2007)

  110. Barrero-Gil A., Alonso G., Sanz-Andres A.: Energy harvesting from transverse galloping. J. Sound Vib. 329, 2873–2883 (2010)

    ADS  Google Scholar 

  111. Jung H.-J., Lee S.-W.: The experimental validation of a new energy harvesting system based on the wake galloping phenomenon. Smart Mater. Struct. 20, 1–10 (2011)

    Google Scholar 

  112. Sirohi J., Mahadik R.: Harvesting wind energy using a galloping piezoelectric beam. J. Vib. Acoust. ASME 134, 011009.1–011009.8 (2012)

    Google Scholar 

  113. Abdelkefi A., Yan Z., Hajj M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 1–10 (2013)

    Google Scholar 

  114. Yang Y., Zhao L., Tang L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102, 064105.1–064105.4 (2013)

    Google Scholar 

  115. Alessandroni S., dell’Isola F., Porfiri M.: A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators. Int. J. Solids Struct. 39, 5295–5324 (2002)

    MATH  Google Scholar 

  116. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10(5), 625–659 (2004)

    MATH  Google Scholar 

  117. Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electromagn. Mech. 21(2), 69–87 (2005)

    Google Scholar 

  118. Altenbach H., Birsan M., Eremeyev V.A.: On a thermodynamic theory of rods with two temperature fields. Acta Mech. 223(8), 1583–1596 (2012)

    MATH  MathSciNet  Google Scholar 

  119. Bîrsan M., Altenbach H., Sadowski T., Eremeyev V.A., Pietras D.: Deformation analysis of functionally graded beams by the direct approach. Compos. B Eng. 43(3), 1315–1328 (2012)

    Google Scholar 

  120. Silvestre N., Camotim D.: First-order generalised beam theory for arbitrary orthotropic materials. Thin Walled Struct. 40(9), 755–789 (2002)

    Google Scholar 

  121. Ranzi G., Luongo A.: A new approach for thin-walled member analysis in the framework of GBT. Thin Walled Struct. 49(11), 1404–1414 (2012)

    Google Scholar 

  122. Piccardo G., Ranzi G., Luongo A.: A direct approach for the evaluation of the conventional modes within the GBT formulation. Thin Walled Struct. 74, 133–145 (2014)

    Google Scholar 

  123. dell’Isola F., Rosa L.: Perturbation methods in torsion of thin hollow Saint-Venant cylinders. Mech. Res. Commun. 23, 145–150 (1996)

    MATH  MathSciNet  Google Scholar 

  124. dell’Isola F., Rosa L.: An extension of Kelvin and Bredt formulas. Math. Mech. Solids 1, 243–250 (1996)

    MATH  MathSciNet  Google Scholar 

  125. Foti, F., Martinelli, L.: A model for the friction controlled bending behaviour of cables. In: Proceedings of 9th International Symposium on Cable Dynamics, Shanghai, China (2011)

  126. Luongo A., Zulli D.: Mathematical Models of Beams and Cables. Wiley-ISTE, London (2013)

    Google Scholar 

  127. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. (ZAMM) 92(1), 52–71 (2011)

    MathSciNet  Google Scholar 

  128. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Piccardo.

Additional information

Communicated by Angela Madeo and Francois Nicot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccardo, G., Pagnini, L.C. & Tubino, F. Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Continuum Mech. Thermodyn. 27, 261–285 (2015). https://doi.org/10.1007/s00161-014-0374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0374-5

Keywords

Navigation