Skip to main content
Log in

Shallow water modeling of rolling pad instability in liquid metal batteries

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Magnetohydrodynamically induced interface instability in liquid metal batteries is analyzed. The batteries are represented by a simplified system in the form of a rectangular cell, in which strong vertical electric current flows through three horizontal layers: the layer of a heavy metal at the bottom, the layer of a light metal at the top, and the layer of electrolyte in the middle. A new two-dimensional nonlinear model based on the conservative shallow water approximation is derived and utilized in a numerical study. It is found that in the case of small density difference between the electrolyte and one of the metals, the instability closely resembles the rolling pad instability observed earlier in the aluminum reduction cells. When the two electrolyte-metal density differences are comparable, the dynamics of unstable systems is more complex and characterized by interaction between two nearly synchronized or nearly anti-synchronized interfacial waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J.C.: Multigrid software for elliptic partial differential equations: Mudpack. NCAR Technical Note-357+STR (1991)

  2. Bojarevics, V., Romerio, M.V.: Long waves instability of liquid metal-electrolyte interface in aluminium electrolysis cells: a generalization of Sele’s criterion. Eur. J. Mech. B Fluids 13(1), 33–56 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Bojarevics, V., Tucs, A.: MHD of large scale liquid metal batteries. In: Light Metals 2017, pp. 687–692. Springer (2017)

  4. Bradwell, D.J., Kim, H., Sirk, A.H.C., Sadoway, D.R.: Magnesium-antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134(4), 1895–1897 (2012)

    Article  Google Scholar 

  5. Davidson, P.A.: Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  6. Davidson, P.A., Lindsay, R.I.: Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273–295 (1998)

    Article  MATH  Google Scholar 

  7. Herreman, W., Nore, C., Cappanera, L., Guermond, J.L.: Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79–114 (2015)

    Article  MathSciNet  Google Scholar 

  8. Horstmann, G.M., Weber, N., T., W.: Coupling and stability of interfacial waves in liquid metal batteries. arXiv preprint arXiv:1708.02159 (2017)

  9. Karniadakis, G., Israeli, M., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comp. Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kelley, D.H., Sadoway, D.R.: Mixing in a liquid metal electrode. Phys. Fluids 26(5), 057102 (2014)

    Article  Google Scholar 

  11. Kelley, D.H., Weier, T.: Fluid mechanics of liquid metal batteries. Appl. Mech. Rev. 70(2), 020801 (2018)

    Article  Google Scholar 

  12. Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jiang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., Sadoway, D.R.: Liquid metal batteries: past, present, and future. Chem. Rev. 113(3), 2075–2099 (2013)

    Article  Google Scholar 

  13. Kim, H., Boysen, D.A., Ouchi, T., Sadoway, D.R.: Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources 241, 239–248 (2013)

    Article  Google Scholar 

  14. Köllner, T., Boeck, T., Schumacher, J.: Thermal Rayleigh–Marangoni convection in a three-layer liquid-metal-battery model. Phys. Rev. E 95, 053114 (2017)

    Article  Google Scholar 

  15. Moreau, R., Evans, J.W.: An analysis of the hydrodynamics of aluminum reduction cells. J. Electrochem. Soc. 131(10), 2251–2259 (1984)

    Article  Google Scholar 

  16. Ouchi, T., Kim, H., Spatocco, B.L., Sadoway, D.R.: Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat. Commun. 7, 10999 (2016)

    Article  Google Scholar 

  17. Rüdiger, G., Schultz, M., Shalybkov, D., Hollerbach, R.: Theory of current-driven instability experiments in magnetic Taylor-Couette flows. Phys. Rev. E 76, 056309 (2007)

    Article  Google Scholar 

  18. Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M., Rüdiger, G.: Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501 (2012)

    Article  Google Scholar 

  19. Sele, T.: Instabilities of the metal surface in electrolyte alumina reduction cells. Met. Mat. Trans. B 8, 613 (1977)

    Article  Google Scholar 

  20. Shen, Y., Zikanov, O.: Thermal convection in a liquid metal battery. Theor. Comp. Fluid Dyn. 30(4), 275–294 (2016)

    Article  Google Scholar 

  21. Sneyd, A., Wang, A.: Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343–360 (1994)

    Article  MATH  Google Scholar 

  22. Stefani, F., Weier, T., Gundrum, T., Gerbeth, G.: How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Conv. Manag. 52(8–9), 2982–2986 (2011)

    Article  Google Scholar 

  23. Sun, H., Zikanov, O., Ziegler, D.P.: Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dyn. Res. 35(4), 255–274 (2004)

    Article  MATH  Google Scholar 

  24. Urata, N.: Magnetics and metal pad instability. In: Essential Readings in Light Metals, pp. 330–335. Springer (2016)

  25. Wang, K., Jiang, K., Chung, B., Ouchi, T., Burke, P.J., Boysen, D.A., Bradwell, D.J., Kim, H., Muecke, U., Sadoway, D.R.: Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature 514(7522), 348–350 (2014)

    Article  Google Scholar 

  26. Weber, N., Beckstein, P., Herreman, W., Horstmann, G.M., Nore, C., Stefani, F., Weier, T.: Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids 29(5), 054101 (2017)

    Article  Google Scholar 

  27. Weber, N., Galindo, V., Priede, J., Stefani, F., Weier, T.: The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries. Phys. Fluids 27(1), 014103 (2015)

    Article  Google Scholar 

  28. Weber, N., Galindo, V., Stefani, F., Weier, T.: Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265, 166–173 (2014)

    Article  Google Scholar 

  29. Weber, N., Nimtz, M., Personnettaz, P., Salas, A., Weier, T.: Electromagnetically driven convection suitable for mass transfer enhancement in liquid metal batteries. arXiv preprint arXiv:1802.02214 (2018)

  30. Xiang, L., Zikanov, O.: Subcritical convection in an internally heated layer. Phys. Rev. Fluids 2, 063501 (2017)

    Article  Google Scholar 

  31. Xu, J., Kjos, O.S., Osen, K.S., Martinez, A.M., Kongstein, O.E., Haarberg, G.M.: Na–Zn liquid metal battery. J. Power Sources 332, 274–280 (2016)

    Article  Google Scholar 

  32. Zikanov, O.: Metal pad instabilities in liquid metal batteries. Phys. Rev. E 92(6), 063021 (2015)

    Article  MathSciNet  Google Scholar 

  33. Zikanov, O., Thess, A., Davidson, P.A., Ziegler, D.P.: A new approach to numerical simulation of melt flows and interface instability in Hall Heroult cells. Metall. Mater. Trans. B 31, 1541–1550 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to Norbert Weber, Tom Weier, Valdis Bojarevics, and Gerrit Horstmann for interesting and stimulating discussions. Financial support was provided by the US NSF (Grant CBET 1435269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zikanov.

Additional information

Communicated by Peter Duck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zikanov, O. Shallow water modeling of rolling pad instability in liquid metal batteries. Theor. Comput. Fluid Dyn. 32, 325–347 (2018). https://doi.org/10.1007/s00162-018-0456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-018-0456-2

Keywords

Navigation