Skip to main content
Log in

Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to investigate the influence of continuous perfusion and mechanical stimulation on bone marrow stromal cells seeded on a collagen meniscus implant.

Methods

Bone marrow aspirates from 6 donors were amplified in vitro. 106 human BMSC were distributed on a collagen meniscus implant. Scaffolds were cultured under static conditions (control) or placed into a bioreactor system where continuous perfusion (10 ml/min) or perfusion and mechanical stimulation (8 h of 10% cyclic compression at 0.5 Hz) were administered daily. After 24 h, 7 and 14 days, cell proliferation, synthesis of procollagen I and III peptide (PIP, PIIIP), histology, and the equilibrium modulus of the constructs were analyzed.

Results

Proliferation demonstrated a significant increase over time in all groups (p < 0.001). PIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.0 ± 0.5 (perfusion), 3.8 ± 0.3 (mechanical stimulation), and 1.8 ± 0.2 U/ml/g protein (static control, lower than perfusion and mechanical stimulation, p < 0.05). These differences were also evident after 2 weeks (2.7 ± 0.3, 4.0 ± 0.6, and 1.8 ± 0.2 U/ml/g protein, p < 0.01); PIIIP synthesis was found to increase from 0.1 ± 0.0 U/ml/g protein after 24 h to 2.9 ± 0.7 (perfusion), 3.1 ± 0.9 (mechanical stimulation), and 1.6 ± 0.3 U/ml/g protein (controls) after 1 week and remained significantly elevated under the influence of perfusion and mechanical stimulation (p < 0.01) after 2 weeks. Mechanical stimulation increased the equilibrium modulus more than static culture and perfusion after 2 weeks (24.7 ± 7.6; 12.3 ± 3.7; 15.4 ± 2.6 kPa; p < 0.02).

Conclusion

Biomechanical stimulation and perfusion have impact on collagen scaffolds seeded with BMSCs. Cell proliferation can be enhanced using continuous perfusion and differentiation is fostered by mechanical stimulation.

Level of evidence

Non-applicable experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, Goldberg V, Yoo J (2008) Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 85(2):445–455

    PubMed  Google Scholar 

  2. Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21(3):451–457

    Article  PubMed  CAS  Google Scholar 

  3. Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res 367:S244–S253

    Article  PubMed  Google Scholar 

  4. Aufderheide AC, Athanasiou KA (2004) Mechanical stimulation toward tissue engineering of the knee meniscus. Ann Biomed Eng 32(8):1161–1174

    Article  PubMed  Google Scholar 

  5. Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70(1):7–14

    PubMed  CAS  Google Scholar 

  6. Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977

    Article  PubMed  CAS  Google Scholar 

  7. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, Wright TM, Bonassar LJ (2008) Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A 14(7):1195–1202

    Article  PubMed  Google Scholar 

  8. Ballyns JJ, Wright TM, Bonassar LJ (2010) Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials 31(26):6756–6763

    Article  PubMed  CAS  Google Scholar 

  9. Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27(5):636–643

    PubMed  CAS  Google Scholar 

  10. Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25(9):1523–1532

    Article  PubMed  CAS  Google Scholar 

  11. Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthr Cartil 3(2):127–138

    Article  PubMed  CAS  Google Scholar 

  12. Darling EM, Athanasiou KA (2003) Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng 31(9):1114–1124

    Article  PubMed  Google Scholar 

  13. de Groot JH, de Vrijer R, Pennings AJ, Klompmaker J, Veth RP, Jansen HW (1996) Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 17(2):163–173

    Article  PubMed  Google Scholar 

  14. Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR (1995) The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am J Sports Med 23(6):721–728

    Article  PubMed  CAS  Google Scholar 

  15. Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30B(4):664–670

    PubMed  CAS  Google Scholar 

  16. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S (2006) Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol 290(6):C1610–C1615

    Article  PubMed  CAS  Google Scholar 

  17. Gleghorn JP, Jones AR, Flannery CR, Bonassar LJ (2007) Boundary mode frictional properties of engineered cartilaginous tissues. Eur Cell Mater 14:20–28 discussion 28-29

    PubMed  CAS  Google Scholar 

  18. Gonzalez-Lucena G, Gelber PE, Pelfort X, Tey M, Monllau JC (2010) Meniscal allograft transplantation without bone blocks: a 5–8 year follow-up of 33 patients. Arthroscopy 26(12):1633–1640

    Article  PubMed  Google Scholar 

  19. Haasper C, Colditz M, Budde S, Hesse E, Tschernig T, Frink M, Krettek C, Hurschler C, Jagodzinski M (2009) Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts. Knee Surg Sports Traumatol Arthrosc 17(11):1384–1392

    Article  PubMed  Google Scholar 

  20. Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49

    Article  PubMed  CAS  Google Scholar 

  21. Ibarra C, Koski JA, Warren RF (2000) Tissue engineering meniscus: cells and matrix. Orthop Clin North Am 31(3):411–418

    Article  PubMed  CAS  Google Scholar 

  22. Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthr Cartil 12(9):736–744

    Article  PubMed  Google Scholar 

  23. Jagodzinski M, Breitbart A, Wehmeier M, Hesse E, Haasper C, Krettek C, Zeichen J, Hankemeier S (2008) Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J Biomech 41(9):1885–1891

    Article  PubMed  CAS  Google Scholar 

  24. Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, van Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41 discussion 41

    PubMed  CAS  Google Scholar 

  25. Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33(1):45–51

    Article  PubMed  CAS  Google Scholar 

  26. Le Roux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124(3):315–321

    Article  Google Scholar 

  27. Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, Daniels AU, Salter D, Jakob M, Quinn TM, Martin I (2006) Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials 27(35):5927–5934

    Article  PubMed  CAS  Google Scholar 

  28. Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234

    Article  PubMed  CAS  Google Scholar 

  29. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M (1999) Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 20(8):701–709

    Article  PubMed  CAS  Google Scholar 

  30. Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 391:S208–S218

    Article  PubMed  Google Scholar 

  31. Peretti GM, Caruso EM, Randolph MA, Zaleske DJ (2001) Meniscal repair using engineered tissue. J Orthop Res 19(2):278–285

    Article  PubMed  CAS  Google Scholar 

  32. Rodkey WG, De Haven KE, Montgomery WH 3rd, Baker CL Jr, Beck CL Jr, Hormel SE, Steadman JR, Cole BJ, Briggs KK (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426

    Article  PubMed  Google Scholar 

  33. Samuelsson H, Ringden O, Lonnies H, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11(2):129–136

    Article  PubMed  CAS  Google Scholar 

  34. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F (2003) Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308–313

    PubMed  CAS  Google Scholar 

  35. Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79(13):8014–8023

    Article  PubMed  CAS  Google Scholar 

  36. Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25(9):1027–1045

    Article  PubMed  CAS  Google Scholar 

  37. Spindler KP, Mayes CE, Miller RR, Imro AK, Davidson JM (1995) Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB). J Orthop Res 13(2):201–207

    Article  PubMed  CAS  Google Scholar 

  38. Stapleton TW, Ingram J, Fisher J, Ingham E (2011) Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng Part A 17(1–2):231–242

    Article  PubMed  CAS  Google Scholar 

  39. Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359

    PubMed  CAS  Google Scholar 

  40. Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963–969

    Article  PubMed  CAS  Google Scholar 

  41. Vailas AC, Zernicke RF, Matsuda J, Curwin S, Durivage J (1986) Adaptation of rat knee meniscus to prolonged exercise. J Appl Physiol 60(3):1031–1034

    PubMed  CAS  Google Scholar 

  42. Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5(4):327–337

    Article  PubMed  CAS  Google Scholar 

  43. Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11):1779–1789

    Article  PubMed  Google Scholar 

  44. Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G, Ravazzolo G, Molinari M, Marcacci M (2011) Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10 year follow-up study. Am J Sports Med 39(5):977–985

    Article  PubMed  Google Scholar 

  45. Zeichen J, van Griensven M, Bosch U (2000) The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med 28(6):888–892

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank J. Viering and H. Schumann for the construction of the bioreactor system used in this study. We acknowledge the writing assistance of Gavin Olender, MSc. We are grateful for the financial support of the “Deutsche Arthrosehilfe” and the German Society of Orthopaedic Traumatologic Sports Medicine (GOTS). We gratefully acknowledge the support of W. Rodkey and Regen Biologics Inc. for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petri, M., Ufer, K., Toma, I. et al. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc 20, 223–231 (2012). https://doi.org/10.1007/s00167-011-1600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1600-3

Keywords

Navigation