Skip to main content
Log in

Rotator cuff repair using a decellularized tendon slices graft: an in vivo study in a rabbit model

  • Shoulder
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Although varieties of surgical repair techniques and materials have been used to repair rotator cuff defects, re-tearing frequently occurs. The purpose of this study is to evaluate the postoperative outcomes of rotator cuff repairs with a decellularized tendon slices (DTSs) graft in a rabbit model.

Methods

Large defects in the infraspinatus tendons were created bilaterally in 21 rabbits. The graft group underwent reconstruction of the defects with the DTSs grafts, while the defect group did not undergo any treatment. The specimens underwent histological observation, biomechanical testing, and magnetic resonance imaging (MRI) detection at 4, 8, and 12 weeks after surgery. In addition, 2 rabbits that were not operated on were used for MRI detection as a normal reference.

Results

Histological analysis revealed that the graft promoted host cell ingrowth and tissue integration, and a tendon-like structure developed at 12 weeks. The ultimate tensile load had a significant difference between specimens at 4 and 12 weeks in the graft group, but there was no significant difference between the graft group and the defect group. In the graft group, the stiffness at 12 weeks was significantly greater than that at 4 or 8 weeks, and it was also greater than the stiffness in the defect group at 12 weeks. MRI demonstrated that the signal strength of the regenerative tissue from the graft group at 12 weeks was similar to that of normal infraspinatus tendon.

Conclusion

The DTSs graft allowed for incorporation of host tendon and improved the biomechanical performance of the regenerative tendon. Therefore, the graft could be a promising bioscaffold to enhance the surgical repair of large rotator cuff defects and consequently improve the clinical outcome of rotator cuff tears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Audenaert E, Van Nuffel J, Schepens A, Verhelst M, Verdonk R (2006) Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc 14:360–364

    Article  CAS  PubMed  Google Scholar 

  2. Baker AR, McCarron JA, Tan CD, Iannotti JP, Derwin KA (2012) Does augmentation with a reinforced fascia patch improve rotator cuff repair outcomes? Clin Orthop Relat Res 470:2513–2521

    Article  PubMed Central  PubMed  Google Scholar 

  3. Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ (1998) Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elbow Surg 7:599–605

    Article  CAS  PubMed  Google Scholar 

  4. Chang CH, Chen CH, Su CY, Liu HT, Yu CM (2009) Rotator cuff repair with periosteum for enhancing tendon–bone healing: a biomechanical and histological study in rabbits. Knee Surg Sports Traumatol Arthrosc 17:1447–1453

    Article  PubMed  Google Scholar 

  5. Chen CH, Chang CH, Wang KC, Su CI, Liu HT, Yu CM, Wong CB, Wang IC, Whu SW, Liu HW (2011) Enhancement of rotator cuff tendon–bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo. Knee Surg Sports Traumatol Arthrosc 19:1597–1607

    Article  PubMed  Google Scholar 

  6. Cheung S, Dillon E, Tham SC, Feeley BT, Link TM, Steinbach L, Ma CB (2011) The presence of fatty infiltration in the infraspinatus: its relation with the condition of the supraspinatus tendon. Arthroscopy 27:463–470

    Article  PubMed  Google Scholar 

  7. Cole BJ, Gomoll AH, Yanke A, Pylawka T, Lewis P, Macgillivray JD, Williams JM (2007) Biocompatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 15:632–637

    Article  PubMed  Google Scholar 

  8. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Denard PJ, Burkhart SS (2011) Arthroscopic revision rotator cuff repair. J Am Acad Orthop Surg 19:657–666

    PubMed  Google Scholar 

  10. Derwin KA, Badylak SF, Steinmann SP, Iannotti JP (2010) Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 19:467–476

    Article  PubMed  Google Scholar 

  11. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP (2006) Commercial extracellular matrix scaffolds for rotator cuff tendon repair. biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am 88:2665–2672

    Article  PubMed  Google Scholar 

  12. Funakoshi T, Majima T, Suenaga N, Iwasaki N, Yamane S, Minami A (2006) Rotator cuff regeneration using chitin fabric as an acellular matrix. J Shoulder Elbow Surg 15:112–118

    Article  PubMed  Google Scholar 

  13. Gavriilidis I, Kircher J, Magosch P, Lichtenberg S, Habermeyer P (2010) Pectoralis major transfer for the treatment of irreparable anterosuperior rotator cuff tears. Int Orthop 34:689–694

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gimbel JA, Van Kleunen JP, Lake SP, Williams GR, Soslowsky LJ (2007) The role of repair tension on tendon to bone healing in an animal model of chronic rotator cuff tears. J Biomech 40:561–568

    Article  PubMed  Google Scholar 

  15. Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA (2011) Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39:1282–1289

    Article  PubMed  Google Scholar 

  16. Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Fujimoto T, Mizuta H (2009) The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elbow Surg 18:391–398

    Article  PubMed  Google Scholar 

  17. Ju YJ, Muneta T, Yoshimura H, Koga H, Sekiya I (2008) Synovial mesenchymal stem cells accelerate early remodeling of tendon–bone healing. Cell Tissue Res 332:469–478

    Article  PubMed  Google Scholar 

  18. Kohno T, Ishibashi Y, Tsuda E, Kusumi T, Tanaka M, Toh S (2007) Immunohistochemical demonstration of growth factors at the tendon–bone interface in anterior cruciate ligament reconstruction using a rabbit model. J Orthop Sci 12:67–73

    Article  CAS  PubMed  Google Scholar 

  19. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, Rodeo SA (2011) Calcium-phosphate matrix with or without TGF-b3 improves tendon–bone healing after rotator cuff repair. Am J Sports Med 39:811–818

    Article  PubMed  Google Scholar 

  20. Kovacevic D, Rodeo SA (2008) Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res 466:622–633

    Article  PubMed Central  PubMed  Google Scholar 

  21. Lewis CW, Schlegel TF, Hawkins RJ, James SP, Turner AS (2001) The effect of immobilization on rotator cuff healing using modified Mason-Allen stitches: a biomechanical study in sheep. Biomed Sci Instrum 37:263–268

    CAS  PubMed  Google Scholar 

  22. Longo UG, Franceschi F, Berton A, Maffulli N, Droena V (2012) Conservative treatment and rotator cuff tear progression. Med Sport Sci 57:90–99

    Article  PubMed  Google Scholar 

  23. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  CAS  PubMed  Google Scholar 

  24. MacGillivray JD, Fealy S, Terry MA, Koh JL, Nixon AJ, Warren R (2006) Biomechanical evaluation of a rotator cuff defect model augmented with a bioresorbable scaffold in goats. J Shoulder Elbow Surg 15:639–644

    Article  PubMed  Google Scholar 

  25. Matthews TJ, Hand GC, Rees JL, Athanasou NA, Carr AJ (2006) Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg Br 88:489–495

    Article  CAS  PubMed  Google Scholar 

  26. Neri BR, Chan KW, Kwon YW (2009) Management of massive and irreparable rotator cuff tears. J Shoulder Elbow Surg 18:808–818

    Article  PubMed  Google Scholar 

  27. Ning LJ, Zhang Y, Chen XH, Luo JC, Li XQ, Yang ZM, Qin TW (2012) Preparation and characterization of decellularized tendon slices for tendon tissue engineering. J Biomed Mater Res A 100:1448–1456

    Article  PubMed  Google Scholar 

  28. Oizumi N, Suenaga N, Fukuda K, Minami A (2007) Massive rotator cuff tears repaired on top of humeral head by McLaughlin’s procedure. J Shoulder Elbow Surg 16:321–326

    Article  PubMed  Google Scholar 

  29. Omae H, Zhao C, Sun YL, An KN, Amadio PC (2009) Multilayer tendon slices seeded with bone marrow stromal cells: a novel composite for tendon engineering. J Orthop Res 27:937–942

    Article  CAS  PubMed  Google Scholar 

  30. Omid R, Lee B (2013) Tendon transfers for irreparable rotator cuff tears. J Am Acad Orthop Surg 21:492–501

    Article  PubMed  Google Scholar 

  31. Papadopoulos P, Karataglis D, Boutsiadis A, Fotiadou A, Christoforidis J, Christodoulou A (2010) Functional outcome and structural integrity following mini-open repair of large and massive rotator cuff tears: a 3–5 year follow-up study. J Shoulder Elbow Surg 20:131–137

    Article  PubMed  Google Scholar 

  32. Perry SM, Gupta RR, Van Kleunen J, Ramsey ML, Soslowsky LJ, Glaser DL (2007) Use of small intestine submucosa in a rat model of acute and chronic rotator cuff tear. J Shoulder Elbow Surg 16:S179–S183

    Article  PubMed  Google Scholar 

  33. Phipatanakul WP, Petersen SA (2009) Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears. Am J Orthop 38:572–575

    PubMed  Google Scholar 

  34. Qin TW, Chen Q, Sun YL, Steinmann SP, Amadio PC, An KN, Zhao C (2012) Mechanical characteristics of native tendon slices for tissue engineering scaffold. J Biomed Mater Res B Appl Biomater 100:752–758

    Article  PubMed Central  PubMed  Google Scholar 

  35. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL (2007) Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am 89:2485–2497

    Article  PubMed  Google Scholar 

  36. Sano H, Kumagai J, Sawai T (2002) Experimental fascial autografting for the supraspinatus tendon defect: remodeling process of the grafted fascia and the insertion into bone. J Shoulder Elbow Surg 11:166–173

    Article  PubMed  Google Scholar 

  37. Santoni BG, McGilvray KC, Lyons AS, Bansal M, Turner AS, Macgillivray JD, Coleman SH, Puttlitz CM (2010) Biomechanical analysis of an ovine rotator cuff repair via porous patch augmentation in a chronic rupture model. Am J Sports Med 38:679–686

    Article  PubMed  Google Scholar 

  38. Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS (2006) The effects of augmentation with swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med 34:275–280

    Article  PubMed  Google Scholar 

  39. Shen W, Chen J, Yin Z, Chen X, Liu H, Heng BC, Chen W, Ouyang HW (2012) Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant 21:943–958

    Article  PubMed  Google Scholar 

  40. Sherman SL, Lin EC, Verma NN, Mather RC, Gregory JM, Dishkin J, Harwood DP, Wang VM, Shewman EF, Cole BJ, Romeo AA (2012) Biomechanical analysis of the pectoralis major tendon and comparison of techniques for tendo-osseous repair. Am J Sports Med 40:1887–1894

    Article  PubMed  Google Scholar 

  41. Xu H, Sandor M, Qi S, Lombardi J, Connor J, McQuillan DJ, Iannotti JP (2012) Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair. J Shoulder Elbow Surg 21:580–588

    Article  PubMed  Google Scholar 

  42. Yokoya S, Mochizuki Y, Nagata Y, Deie M, Ochi M (2008) Tendon–bone insertion repair and regeneration using polyglycolic acid sheet in the rabbit rotator cuff injury model. Am J Sports Med 36:1298–1309

    Article  PubMed  Google Scholar 

  43. Zalavras CG, Gardocki R, Huang E, Stevanovic M, Hedman T, Tibone J (2006) Reconstruction of large rotator cuff tendon defects with porcine small intestinal submucosa in an animal model. J Shoulder Elbow Surg 15:224–231

    Article  PubMed  Google Scholar 

  44. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National High Technology Research and Development Program of China (2012AA020502) and National Natural Science Foundation of China (31370988). We thank Ms. Jiang P. Fan and Jamie M. Kimball for the linguistic assistance during the preparation of this manuscript.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Wu Qin.

Additional information

Juan Pan and Guo-Ming Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Liu, GM., Ning, LJ. et al. Rotator cuff repair using a decellularized tendon slices graft: an in vivo study in a rabbit model. Knee Surg Sports Traumatol Arthrosc 23, 1524–1535 (2015). https://doi.org/10.1007/s00167-014-2923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-2923-7

Keywords

Navigation