Skip to main content
Log in

Fuzzy sliding mode control based on boundary layer theory for chattering-free and robust induction motor drive

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The boundary layer approach is the most popular method to reduce the chattering phenomenon in sliding mode control (SMC) for uncertain nonlinear systems. This paper applies the fuzzy sliding mode structure based on the boundary layer theory which is used as speed controller of an indirect field-oriented control (IFOC) of an induction motor (IM) drive. A fuzzy inference system is assigned for reaching the controller part of the fuzzy sliding mode controller (FSMC) to eliminate the chattering phenomenon in spite of the small and large uncertainties in the system. The applied fuzzy system acts like a saturation function technique in a thin boundary layer near the sliding surface so that the stability of the system is guaranteed. Also, the equivalent control part is estimated to avoid the computational burden by an averaging filter. On the other hand, the averaging filter assists to improve the tracking performance despite the possibility of large uncertainties in the system so that the stability of the system is guaranteed. The main advantages of the proposed chattering-free speed controller are robustness to parameter variations and external load disturbance. The simulation results are shown to verify the effectiveness of the proposed speed controller, and its advantages are shown in comparison with the FSMC system and the conventional SMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chattopadhyay AK (1997) Advances in vector control OFAC motor drives—a review. Sadhana 22(6):797–820

    Article  Google Scholar 

  2. Moallem M, Mirzaeian B, Mohammed OA, Lucas C (2001) Multi-objective genetic-fuzzy optimal design of PI controller in the indirect field oriented control of an induction motor. IEEE Trans Magn 37(5):3608–3612

    Article  Google Scholar 

  3. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  4. Bartoszewicz A, Nowacka-Leverton A (2007) SMC without the reaching phase—the switching plane design for the third-order system. Control Theory Appl IET 1(5):1461–1470

    Article  Google Scholar 

  5. Barrero F, Gonzalez A, Torralba A, Galvan E, Franquelo LG (2002) Speed control of induction motors using a novel fuzzy sliding-mode structure. IEEE Trans Fuzzy Syst 10(3):375–383

    Article  Google Scholar 

  6. Shahnazi R, Shanechi HM, Pariz N (2008) Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control. IEEE Trans Energy Convers 23(1):138–147

    Article  Google Scholar 

  7. Jinhui Z, Peng S, Yuanqing X (2010) Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans Fuzzy Syst 18(4):700–711

    Article  Google Scholar 

  8. Orowska-Kowalska T, Kaminski M, Szabat K (2010) Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Trans Ind Electron 57(4):1309–1317

    Article  Google Scholar 

  9. Chen DY, Zhao WL, Ma XY, Zhang RF (2011) No-chattering sliding mode control chaos in Hindmarsh-Rose neurons with uncertain parameters. Comput Math Appl 61(10):3161–3171

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng NB, Guan LW, Wang LP, Han J (2011) Chattering reduction of sliding mode control by adopting nonlinear saturation function. Adv Mat Res 143:53–61

    Google Scholar 

  11. Tseng ML, Chen MS (2010) Chattering reduction of sliding mode control by low pass filtering the control signal. Asian J Control 12(3):392–398

    Article  MathSciNet  Google Scholar 

  12. Slotine JJE, Li W (1991) Applied nonlinear control, vol 461. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  13. Chang FJ, Twu SH, Chang S (1992) Tracking control of DC motors via an improved chattering alleviation control. IEEE Trans Ind Electron 39(1):25–29

    Article  Google Scholar 

  14. Lee H, Kim E, Kang HJ, Park M (2001) A new sliding-mode control with fuzzy boundary layer. Fuzzy Sets Syst 120(1):135–143

    Article  MATH  MathSciNet  Google Scholar 

  15. Cupertino F, Naso D, Mininno E, Turchiano B (2009) Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors. IEEE Trans Ind Appl 45(5):1688–1696

    Article  Google Scholar 

  16. Kim YK, Jeon GJ (2004) Error reduction of sliding mode control using sigmoid-type nonlinear interpolation in the boundary layer. Int J Control Syst 2(4):523–529

    MathSciNet  Google Scholar 

  17. Zadeh LA (1988) Fuzzy logic. Computer 21(4):83–93

    Article  Google Scholar 

  18. Nelson D, Challoo R, McLauchlan R, Omar S (1997) Implementation of fuzzy logic for an antilock braking system. IEEE 3684:3680–3685

    Google Scholar 

  19. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. Part II. IEEE Trans Syst Man Cybern 20(2):419–435

    Article  MATH  Google Scholar 

  20. Saghafinia A, Wooi Ping H, Rahman M (2010) High performance induction motor drive using hybrid fuzzy-PI and PI controllers: a review. Int Rev Electr Eng-Iree 5(5):2000–2012

    Google Scholar 

  21. Xue YJ, Yang SY (2003) Synchronization of generalized Henon map by using adaptive fuzzy controller. Chaos, Solitons Fractals 17(4):717–722

    Article  MATH  MathSciNet  Google Scholar 

  22. Rong-Jong W, Kuo-Ho S (2006) Adaptive enhanced fuzzy sliding-mode control for electrical servo drive. IEEE Trans Ind Electron 53(2):569–580

    Article  Google Scholar 

  23. Yagiz N, Hacioglu Y, Taskin Y (2008) Fuzzy sliding-mode control of active suspensions. IEEE Trans Ind Electron 55(11):3883–3890

    Article  Google Scholar 

  24. Kuo CL, Li THS, Guo NR (2005) Design of a novel fuzzy sliding-mode control for magnetic ball levitation system. J Intell Robot Syst 42(3):295–316

    Article  Google Scholar 

  25. Yau HT, Chen CL (2006) Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons Fractals 30(3):709–718

    Article  Google Scholar 

  26. Roopaei M, Zolghadri M, Meshksar S (2009) Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems. Commun Nonlinear Sci Numer Simul 14(9–10):3670–3681

    Article  MATH  MathSciNet  Google Scholar 

  27. Bose BK (1986) Power electronics and AC drives. Prentice Hall, Upper Saddle River

    Google Scholar 

  28. Bose BK (2002) Modern power electronics and AC drives. Prentice Hall PTR, USA

    Google Scholar 

  29. Leonhard W (2001) Control of electrical drives. Springer, Berlin

    Book  Google Scholar 

  30. Kung CC, Su KH (2005) Adaptive fuzzy position control for electrical servodrive via total-sliding-mode technique. Electr Power Appl IEE Proc 152(6):1489–1502. doi:10.1049/ip-epa:20045253

    Article  Google Scholar 

  31. Wang WJ, Chen JY (1999) A new sliding mode position controller with adaptive load torque estimator for an induction motor. IEEE Trans Energy Convers 14(3):413–418

    Article  Google Scholar 

  32. Ertugrul M, Sabanovic A, Ohnishi K (1996) A generalized approach for Lyapunov design of sliding mode controllers for motion control applications. IEEE 1:407–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Saghafinia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghafinia, A., Wooi Ping, H. & Nasir Uddin, M. Fuzzy sliding mode control based on boundary layer theory for chattering-free and robust induction motor drive. Int J Adv Manuf Technol 71, 57–68 (2014). https://doi.org/10.1007/s00170-013-5398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5398-7

Keyword

Navigation