Skip to main content
Log in

Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The coronary stent fabrication requires a high-precision profile cut. Fibre lasers present a solution to accomplish these requirements. This paper presents an experimental study of fibre laser cutting of 316L stainless steel thin sheets. The effect of peak pulse power, pulse frequency and cutting speed on the cutting quality for fixed gas type and gas pressure was investigated. A mathematical model based on energy balances for the dross dimensions was formulated. The dross height and the dross diameter were analysed and compared with the experimental results. This allows adjustment of the process parameters to reduce the dimensions of the dross deposited at the bottom of the workpiece during laser cutting of thin sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tawari G, Sarin Sundar JK, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239

    Article  Google Scholar 

  2. Kleine KF, Whitney B, Watkins KG (2002) Use of fiber lasers for micro cutting applications in medical device industry. In: 21st International Congress on Applications of Lasers and Electro-Optics

  3. Muhammad N, Whitehead D, Boor A, Li L (2010) Precision machine design. Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications. J Mater Process Technol 210:2261–2267

    Article  Google Scholar 

  4. Meng H, Liao J, Zhou Y, Zhang Q (2009) Laser micro-processing of cardiovascular stent with fiber laser cutting system. Opt Laser Technol 41:300–302

    Article  Google Scholar 

  5. Baumeister M, Dickman K, Hoult T (2006) Fiber laser micro-cutting of stainless steel sheets. J Appl Phys A 85:121–124

    Article  Google Scholar 

  6. Scintilla LD, Sorgente D, Tricarico L (2011) Experimental investigation on fiber laser cutting of Ti6Al4V thin sheet. J Adv Mater Res 264-265:1281–1286

    Article  Google Scholar 

  7. Powell J, Al-Mashikhi SO, Voisey KT (2011) Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt Lasers Eng 49:1069–1075

    Article  Google Scholar 

  8. Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2011) Experimental and theoretical investigation of fibre laser crack-free cutting of thick-section alumina. Int J Mach Tools Manuf 51:859–870

    Article  Google Scholar 

  9. Kathuria YP (2005) Laser microprocessing of metallic stent for medical therapy. J Mater Process Technol 170:545–550

    Article  Google Scholar 

  10. Pfeifer R, Herzog D, Hustedt M, Barcikowski S (2010) Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—influence of process parameters. J Mater Process Technol 210:1918–1925

    Article  Google Scholar 

  11. Shanjin LV, Yang W (2006) An investigation of pulsed laser cutting of titanium alloy sheet. Opt Lasers Eng 44:1067–1077

    Article  Google Scholar 

  12. Yung KC, Zhu HH, Yue TM (2005) Theoretical and experimental study on the kerf profile of the laser micro-cutting NiTi shape memory alloy using 355 nm Nd:YAG. Smart Mater Struct 14:337–342

    Article  Google Scholar 

  13. Muhammad N, Whitehead D, Boor A, Oppenlander W, Liu Z, Li L (2012) Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications. Appl Phys A 106:607–617

    Article  Google Scholar 

  14. Lia C, Nikumbb S, Wong F (2006) An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices. Opt Lasers Eng 44:1078–1087

    Article  Google Scholar 

  15. Huang H, Zheng HY, Lim GC (2004) Femtosecond laser machining characteristics of nitinol. Appl Surf Sci 228:201–206

    Article  Google Scholar 

  16. Raval A, Choubey A, Engineer C, Kothwala D (2004) Development and assessment of 316LVM cardiovascular stents. Mater Sci Eng A 386:331–343

    Article  Google Scholar 

  17. Scintilla LD, Tricarico L (2013) Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets. Opt Laser Technol 46:42–52

    Article  Google Scholar 

  18. Yilbas BS, Abdul Aleem BJ (2006) Dross formation during laser cutting process. J Phys D Appl Phys 39:1451–1461

    Article  Google Scholar 

  19. Tani G, Tomesani L, Campana G, Fortunato A (2004) Quality factors assessed by analytical modelling in laser cutting. Thin Solid Films 453-454:486–491

    Article  Google Scholar 

  20. Schuöcker D, Aichinger J, Majer R (2012) Dynamic phenomena in laser cutting and process performance. Phys Procedia 39:179–185

    Article  Google Scholar 

  21. Shuja SZ, Yilbas BS, Momin O (2011) Laser heating of a moving slab: influence of laser intensity parameter and scanning speed on temperature field and melt size. Opt Laser Technol 49:265–272

    Article  Google Scholar 

  22. Shikida M, Yokota T, Naito J, Sato K (2010) Fabrication of a stent-type thermal flow sensor for measuring nasal respiration. J Micromech Microeng 20:055029

    Article  Google Scholar 

  23. Teixidor D, Orozco F, Thepsonthi T, Ciurana J, Rodriguez CA, Özel T (2013) Effect of process parameters in nanosecond pulsed laser micromachining of PMMA-based microchannels at near-infrared and ultraviolet wavelengths. Int J Adv Manuf Technol 67:1651–1664

    Article  Google Scholar 

  24. Tani G, Tomesani L, Campana G (2003) Prediction of melt geometry in laser cutting. Appl Surf Sci 208-209:142–147

    Article  Google Scholar 

  25. Steen WM, Mazumder J (2010) Laser material processing, 4th edn. Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Ciurana.

Glossary

CS

Cutting speed

HAZ

Heat-affected zone

PF

Pulse frequency

Ppp

Peak pulse power

SEM

Scanning electron microscopy

SMA

Shape memory alloy

a

Absorptance of SS 316L at a wavelength of 1.064 μm

A

Cross-sectional area

C pm

Specific heat capacity of liquid phase

C ps

Specific heat capacity of solid phase

d H

Dross height

d D

Dross diameter

ρ G

Density of assisting gas

ρ L

Density of molten material

ρ

Density of workpiece

L m

Latent heat of melting

R

Laser beam spot radius

R a

Roughness average

s L

Liquid layer thickness

T v

Boiling temperature

T m

Melting temperature

T i

Ambient temperature

ζ

Shear stress

μ L

Dynamic viscosity of molten material

μ G

Dynamic viscosity of assisting gas

v

Cutting speed

v G

Velocity of gas jet

z

Sheet thickness

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixidor, D., Ciurana, J. & Rodriguez, C.A. Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets. Int J Adv Manuf Technol 71, 1611–1621 (2014). https://doi.org/10.1007/s00170-013-5599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5599-0

Keywords

Navigation