Skip to main content
Log in

A robust fuzzy k-means clustering model for interval valued data

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

In this paper a robust fuzzy k-means clustering model for interval valued data is introduced. The peculiarity of the proposed model is the capability to manage anomalous interval valued data by reducing the effects of such outliers in the clustering model. In the interval case, the concept of anomalous data involves both the center and the width (the radius) of an interval. In order to show how our model works the results of a simulation experiment and an application to real interval valued data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beni, G., & Liu, X., (1994) A least biased fuzzy clustering method, IEEE Transactions on Pattern Recognition Analysis and Machine Intelligence, 16(9), 954–960.

    Article  Google Scholar 

  • Bezdek, J.C., (1981) Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.

    Book  Google Scholar 

  • Bock, H.H., & Diday, E. (eds.) (2000) Analysis of symbolic data. Exploratory methods for extracting statistical information from complex data, Springer-Verlag, Heidelberg.

    MATH  Google Scholar 

  • Chavent, M., (2000) Criterion-based divisive clustering for symbolic objects, in Analysis of Symbolic Data (eds. Bock, H.H., & Diday, E.), Springer-Verlag, Heidelberg.

    MATH  Google Scholar 

  • Chavent, M., & Lechevallier, Y., (2002) Dynamical clustering algorithm of interval data: optimization of an adequacy criterion based on Hausdorff distance, in: Classification, Clustering and Data Analysis (eds. Jajuga, K., Sokolowski, A. & Bock, H.H.,), Springer, Heidelberg, 53–59.

    Chapter  Google Scholar 

  • Chavent, M., De Carvalho, F.A.T., Lechevallier, Y., & Verde, R., (2003) Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle, Revue de Statistiques Appliquées, 51 (4), 5–29.

    Google Scholar 

  • Chavent, M., (2004) An Hausdorff distance beteen hyper-rectangles for clustering interval data, in: Classification, Clustering and Data Mining Applications (eds. Banks, D., House, L., McMorris, F. R., Arabie, P. & Gaul, W.), Springer, Heidelberg, 333–340.

    Chapter  Google Scholar 

  • D’Urso, P., (2005) Fuzzy clustering for data time arrays with inlier and outlier time trajectories, IEEE Transactions on Fuzzy Systems, 13 (5), 583–604.

    Article  Google Scholar 

  • D’Urso, P., & Giordani, P., (2004) A least squares approach to principal component analysis for interval valued data, Chemometrics and Intelligent Laboratory Systems, 70, 179–192.

    Article  Google Scholar 

  • D’Urso, P., & Giordani, P., (2006) A weighted fuzzy c-means clustering model for fuzzy data, Computational Statistics & Data Analysis, 50, 1496–1523.

    Article  MathSciNet  Google Scholar 

  • de Carvalho, F.A.T., (1994) Proximity coefficients between Boolean symbolic objects, in New Approaches in Classification and Data Analysis (eds. Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., & Burtschy, B.), Springer, Heidelberg, 387–394.

    Chapter  Google Scholar 

  • de Carvalho, F.A.T., Brito, F., & Bock, H.H., (2004) Dynamic clustering for interval data based on L 2 distance, Technical Report n. 0437, IAP Statistics Network.

  • de Carvalho, F.A.T., & de Souza, R.M.C.R., (1998) New metrics for constrained Boolean symbolic objects, in: Proceedings of the conference on Knowledge Extraction and Symbolic Data Analysis (KESDA ’98). Office for Official Publications of the European Communities, Luxemburg, 175–187.

    Google Scholar 

  • de Carvalho, F.A.T., de Souza, R.M.C.R., Chavent, M., & Lechevallier, Y. (2006) Adaptive Hausdorff distances and dynamic clustering of symbolic interval data, Pattern Recognition Letters 27, 167–179.

    Article  Google Scholar 

  • de Souza, R.M.C.R., & de Carvalho, F.A.T., (2004) Clustering of interval data based on city-block distances, Pattern Recognition Letters, 25, 353–365.

    Article  Google Scholar 

  • Davè, R., (1991) Characterization and detection of noise in clustering, Pattern Recognition Letters, 12, 657–664.

    Article  Google Scholar 

  • Davè, R., & Fu, T., (1994) Robust shape detection using fuzzy clustering: practical applications, Fuzzy Sets and Systems, 65, 161–185.

    Article  Google Scholar 

  • Davè, R., & Krishnapuram, R., (1997) Robust clustering methods: an unified view, IEEE Transactions on Fuzzy Systems, 5 (2), 270–293.

    Article  Google Scholar 

  • Davè, R., & Sen, S., (2002) Robust fuzzy clustering of relational data, IEEE Transactions on Fuzzy Systems, 10 (6), 713–727.

    Article  Google Scholar 

  • Diday, E., & Brito, M.P., (1989) Symbolic cluster analysis, in Conceptual and Numerical Analysis of Data (ed. Opitz, O.), 45–84, Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • El-Sonbaty, Y., & Ismail, M.A., (1998a) Fuzzy clustering for symbolic data, IEEE Transactions on Fuzzy Systems, 6 (2), 195–204.

    Article  Google Scholar 

  • El-Sonbaty, Y., & Ismail, M.A., (1998b) On-line hierarchical clustering, Pattern recognition Letters, 19, 1285–1291.

    Article  Google Scholar 

  • Frigui, H., & Krishnapuram, R., (1999) A robust competitive algorithm with applications in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (5), 450–465.

    Article  Google Scholar 

  • Gordon, A.D., (2000) An iterative relocation algorithm for classifying symbolic data, in: Data Analysis: Scientific Modeling and Practical Application (eds. Gaul, W.; Opitz, O., Schader, M.,), 17–23, Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Gowda, K.C., & Diday, E., (1991) Symbolic clustering using a new dissimilarity measure, Pattern Recognition, 24 (6), 567–578.

    Article  Google Scholar 

  • Gowda, K.C., & Diday, E., (1992) Symbolic clustering using a new similarity measure, IEEE Transactions on Systems, Man, and Cybernetics, 22, 368–378.

    Article  Google Scholar 

  • Gowda, K.C., & Ravi, T.R., (1995a) Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity, Pattern Recognition, 28 (8), 1277–1282.

    Article  Google Scholar 

  • Gowda, K.C., & Ravi, T.R., (1995b) Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity, Pattern recognition Letters, 16, 647–652.

    Article  Google Scholar 

  • Gowda, K.C., & Ravi, T.R., (1999a) Clustering of symbolic objects using gravitational approach, IEEE Transactions on Systems, Man, and Cybernetics, 29 (6) 888–894.

    Article  Google Scholar 

  • Gowda, K.C., & Ravi, T.R., (1999b) An ISODATA clustering procedure for symbolic objects using a distributed genetic algorithm, Pattern Recognition Letters, 20, 659–666.

    Article  Google Scholar 

  • Guru, D.S., Kiranagi, B.B., & Nagabhushan, P., (2004) Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns, Pattern Recognition Letters, 25, 1203–1213.

    Article  Google Scholar 

  • Hathaway, R.J., Bezdek, J.C., & Pedrycz, W., (1996) A parametric model for fusing heterogeneous fuzzy data, IEEE Transactions on Fuzzy Systems, 4 (3), 1277–1282.

    Article  Google Scholar 

  • hathaway, R.J., Bezdek, J.C., & Hu, Y., (2000) Generalized fuzzy c-means clustering strategies using Lp norm distances, IEEE Transactions on Fuzzy Systems, 8 (5), 576–582.

    Article  Google Scholar 

  • Ichino, M., & Yaguchi, H., (1994) Generalized Minkowsky metrics for mixed feature-type data analysis, IEEE Transaction of Systems, Man and Cybernetics, 24 (4), 698–708.

    Article  Google Scholar 

  • Kersten, P.R., (1999) Fuzzy order statistics and their application to fuzzy clustering, IEEE Transactions on Fuzzy Systems, 7 (6), 708–712.

    Article  Google Scholar 

  • Keller, A., (2000) Fuzzy clustering with outliers, in 19th Intern. Conf. of the North American Fuzzy Information Processing Society-NAFIPS “Peach FuzzAtlanta”, 143–147.

  • Kim, J., Krishnapuram, R., & Davé, R.N., (1996) Application of the least trimmed squares techniques to prototype-based clustering, Pattern Recognition Letters, 17, 633–641.

    Article  Google Scholar 

  • Krishnapuram, R., & Keller, J., (1993) A possibilisitc approach to clustering, IEEE Transactions on Fuzzy Systems, 1, 98–110.

    Article  Google Scholar 

  • Krishnapuram, R., & Keller, J., (1996) The possibilistic c-means algorithm: insights and recommendations, IEEE Transactions on Fuzzy Systems, 4, 385–393.

    Article  Google Scholar 

  • Leşki, J.M., (2003) Towards a robust fuzzy clustering, Fuzzy Sets and Systems, 137, 215–233.

    Article  MathSciNet  Google Scholar 

  • Mali, K., & Mitra, S., (2003) Clustering and its validation in a symbolic framework, Pattern Recognition Letters, 24, 2367–2376.

    Article  Google Scholar 

  • Ohashi, Y., (1984) Fuzzy clustering and robust estimation, in 9th Meeting SAS Users Group Int., Hollywood Beach.

  • Ralambondrainy, H., (1995) A conceptual version of the K-means algorithm, Pattern Recognition Letters, 16, 1147–1157.

    Article  Google Scholar 

  • Selim, S.Z., & Ismail, M.A., (1984) Soft clustering of multidimensional data: a semi-fuzzy approach, Pattern Recognition, 17 (5), 559–568.

    Article  Google Scholar 

  • yang, M.S., Hwang, P.Y., & Chen, D.H., (2004) Fuzzy clustering algorithms for mixed feature variables, Fuzzy Sets and Systems, 141, 301–317.

    Article  MathSciNet  Google Scholar 

  • Yang, M.S., & Ko, C.H., (1996) On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Sets and Systems, 84, 49–60.

    Article  MathSciNet  Google Scholar 

  • Yang, M.S., & Liu, H.H., (1999) Fuzzy clustering procedures for conical fuzzy vector data, Fuzzy Sets and Systems, 106, 189–200.

    Article  MathSciNet  Google Scholar 

  • Yang, M.S., & Liu, T.S., (2002) Fuzzy least-squares linear regression analysis for fuzzy input-output data, Fuzzy Sets and Systems, 126, 389–399.

    Article  MathSciNet  Google Scholar 

  • Zimmermann, H.J., (2001) Fuzzy Set Theory and its Applications, Kluwer Academic Press, Dordrecht.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Urso, P., Giordani, P. A robust fuzzy k-means clustering model for interval valued data. Computational Statistics 21, 251–269 (2006). https://doi.org/10.1007/s00180-006-0262-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-006-0262-y

Keywords

Navigation