Skip to main content
Log in

The expected convex hull trimmed regions of a sample

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Given a data set in the multivariate Euclidean space, we study regions of central points built by averaging all their subsets with a fixed number of elements. The averaging of these sets is performed by appropriately scaling the Minkowski or elementwise summation of their convex hulls. The volume of such central regions is proposed as a multivariate scatter estimate and a circular sequence algorithm to compute the central regions of a bivariate data set is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artzner Ph, Delbaen F, Eber JM and Heath D (1999). Coherent measures of risk. Math Financ 9: 203–228

    Article  MATH  MathSciNet  Google Scholar 

  • Bickel PJ and Lehmann EL (1975). Descriptive statistics for nonparametric models. II. Location. Ann Statist 3: 1045–1069

    MATH  MathSciNet  Google Scholar 

  • Bickel PJ and Lehmann EL (1976). Descriptive statistics for nonparametric models. III. Dispersion. Ann Statist 4: 1139–1158

    MATH  MathSciNet  Google Scholar 

  • Cascos I (2006). Expected convex hull trimming of a data set. In: Rizzi, A and Vichi, M (eds) COMPSTAT 2006. Proceedings in computational statistics, pp 673–680. Physica-Verlag, Heidelberg

    Google Scholar 

  • Cascos I (2007) Depth functions based on a number of observations of a random vector. Working paper 07-29. Statistics and Econometrics Series, Universidad Carlos III de Madrid. Available from http://econpapers.repec.org/paper/ctewsrepe/

  • Cascos I and López-Díaz M (2005). Integral trimmed regions. J Multivar Anal 96: 404–424

    Article  MATH  Google Scholar 

  • Cascos I and Molchanov I (2007). Multivariate risks and depth-trimmed regions. Financ Stoch 11: 373–397

    Article  MathSciNet  Google Scholar 

  • Dyckerhoff R (2000). Computing zonoid trimmed regions of bivariate data sets. In: Bethlehem, J and Heijden, P (eds) COMPSTAT 2000. Proceedings in computational statistics, pp 295–300. Physica-Verlag, Heidelberg

    Google Scholar 

  • van der Edelsbrunner H (1987). Algorithms in combinatorial geometry. Springer, Berlin

    MATH  Google Scholar 

  • Jouini E, Meddeb M and Touzi N (2004). Vector-valued coherent risk measures. Financ Stoch 8: 531–552

    MATH  MathSciNet  Google Scholar 

  • Koshevoy G and Mosler K (1997). Zonoid trimming for multivariate distributions. Ann Statist 25: 1998–2017

    Article  MATH  MathSciNet  Google Scholar 

  • Liu RY (1990). On a notion of data depth based on random simplices. Ann Statist 18: 405–414

    MATH  MathSciNet  Google Scholar 

  • Liu RY, Parelius JM and Singh K (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference. Ann Statist 27: 783–858

    MATH  MathSciNet  Google Scholar 

  • Massé JC and Theodorescu R (1994). Halfplane trimming for bivariate distributions. J Multivar Anal 48: 188–202

    Article  MATH  Google Scholar 

  • Molchanov I (2005). Theory of Random Sets. Springer, London

    MATH  Google Scholar 

  • Mosler K (2002). Multivariate dispersion, central regions and depth. The lift zonoid approach. Lecture Notes in Statistics, vol 165. Springer, Berlin

    Google Scholar 

  • Oja H (1983). Descriptive statistics for multivariate distributions. Statist Probab Lett 1: 327–332

    Article  MATH  MathSciNet  Google Scholar 

  • Ruts I and Rousseeuw PJ (1996). Computing depth contours of bivariate point clouds. Comput Statist Data Anal 23: 153–168

    Article  MATH  Google Scholar 

  • Tukey JW (1975) Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians. Vancouver, pp 523–531

  • Zuo Y and Serfling R (2000a). General notions of statistical depth function. Ann Statist 28: 461–482

    Article  MATH  MathSciNet  Google Scholar 

  • Zuo Y and Serfling R (2000b). Structural properties and convergence results for contours of sample statistical depth functions. Ann Statist 28: 483–499

    Article  MATH  MathSciNet  Google Scholar 

  • Zuo Y and Serfling R (2000c). Nonparametric notions of multivariate “scatter measure” and “more scattered” based on statistical depth functions. J Multivar Anal 75: 62–78

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Cascos.

Additional information

Supported by the Spanish Ministry of Education and Science under grant MTM2005-02254.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascos, I. The expected convex hull trimmed regions of a sample. Computational Statistics 22, 557–569 (2007). https://doi.org/10.1007/s00180-007-0095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-007-0095-3

Keywords

Navigation