Skip to main content
Log in

Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper proposes finite mixtures of different Archimedean copula families as a flexible tool for modelling the dependence structure in multivariate data. A novel approach to estimating the parameters in this mixture model is presented by maximizing the penalized marginal likelihood via iterative quadratic programming. The motivation for the penalized marginal likelihood stems from an underlying Bayesian model that imposes a prior distribution on the parameter of each Archimedean copula family. An approximative marginal likelihood is obtained by a classical quadrature discretization of the integral w.r.t. each family-specific prior distribution, thus yielding a finite mixture model. Family-specific smoothness penalties are added and the penalized marginal likelihood is maximized using an iterative quadratic programming routine. For comparison purposes, we also present a fully Bayesian approach via simulation-based posterior computation. The performance of the novel estimation approach is evaluated by simulations and two examples involving the modelling of the interdependence of exchange rates and of wind speed measurements, respectively. For these examples, penalized marginal likelihood estimates are compared to the corresponding Bayesian estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aas K, Berg D (2009) Models for construction of multivariate dependence—a comparison study. Eur J Financ 15(7–8):639–659

    Article  Google Scholar 

  • Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44(2):182–198

    Article  MATH  MathSciNet  Google Scholar 

  • Bogaerts K, Lesaffre E (2008) Modeling the association of bivariate interval-censored data using the copula approach. Stat Med 27(30):6379–6392

    Article  MathSciNet  Google Scholar 

  • Böhning D (1999) Computer-assisted analysis of mixtures and applications. Meta-analysis, disease mapping and others. Chapman & Hall / CRC, Boca Raton

  • Cai Z, Chen X, Fan Y, Wang X (2009) Selection of copulas for risk management. University of North Carolina at Charlotte, Unpublished manuscript

  • Danaher PJ, Smith MS (2011) Modeling multivariate distributions using copulas: applications in marketing. Market Sci 30:4–21

    Article  Google Scholar 

  • Diebolt J, Robert C (1994) Estimation of finite mixture distributions through bayesian sampling. J R Stat Soc B 56(2):363–375

    MATH  MathSciNet  Google Scholar 

  • Efron B (2001) Selection criteria for scatterplot smoothers. Ann Stat 29:470–504

    Article  MATH  MathSciNet  Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11:89–121

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts P (2009) Copulas: a personal view. J Risk Insur 76(3):639–650

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Springer, Heidelberg

    MATH  Google Scholar 

  • Gilks W, Richardson S, Spielgelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Härdle W, Okhrin O (2010) De copulis non est disputandum—copulae: an overview. AStA Adv Stat Anal 94:1–31

    Article  MathSciNet  Google Scholar 

  • Hoeffding W (1940) Masstabinvariante Korrelationstheorie. Schriften des Mathematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin 5:179–233

  • Hofert M, Mächler M (2011) Nested archimedean copulas meet R: the nacopula package. J Stat Softw 39(9):1–20

    Google Scholar 

  • Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financ Econ 16(10):717–729

    Article  Google Scholar 

  • Huard D, Évin G, Favre A (2006) Bayesian copula selection. Comput Stat Data Anal 51(2):809–822

    Article  MATH  Google Scholar 

  • Jaworski P, Durante F, Härdle W, Rychlik T (2010) Copula theory and its applications. In: Proceedings of the workshop held in Warsaw. Lecture Notes in Statistics, 25–26 Sept 2009. Springer

  • Joe H (1996) Families of \(m\)-variate distributions with given margins and \(m(m-1)/2\) bivariate dependence parameters. In: Rüschendorf L, Schweizer B, Taylor MD (eds) Distributions with fixed marginals and related topics

  • Kauermann G, Krivobokova T, Fahrmeir L (2009) Some asymptotic results on generalized penalized spline smoothing. J R Stat Soc Ser B 71:487–503

    Article  MATH  MathSciNet  Google Scholar 

  • Kolev N, Anjos U, Mendes B (2006) Copulas: a review and recent developments. Stoch Models 22(4):617–660

    Article  MATH  MathSciNet  Google Scholar 

  • Komárek A, Lesaffre E (2008) Generalized linear mixed model with a penalized gaussian mixture as a random-effects distribution. Comput Stat Data Anal 52(7):3441–3458

    Article  MATH  Google Scholar 

  • Komárek A, Lesaffre E (2009) The regression analysis of correlated interval-censored data: illustration using accelerated failure time models with flexible distributional assumptions. Statl Model 9(4):299–319

    Article  Google Scholar 

  • Lambert P (2007) Archimedean copula estimation using Bayesian splines smoothing techniques. Comput Stat Data Anal 51(12):6307–6320

    Article  MATH  Google Scholar 

  • Lunn D, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Marin MKRCJM (2005) Bayesian modelling and inference on mixtures of distributions. In Dey, RC (eds) Handbook of statistics. North-Holland, Amsterdam

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • McNeil A, Frey R, Embrechts P (2005) Quantitative risk management. Princeton University Press, Princeton Series in Finance

  • Nelsen R (2006) An introduction to copulas, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Nikoloulopoulos A, Karlis D (2009) Finite normal mixture copulas for multivariate discrete data modeling. J Stat Plan Inf 139:3878–3890

    Article  MATH  MathSciNet  Google Scholar 

  • Okhrin O, Okhrin Y, Schmid W (2013) Properties of hierarchical Archimedean copulas. Stat Risk Model 30:21–53

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts G, Rosenthal J (2009) Examples of adaptive MCMC. J Comput Graph Stat 18:349–367

    Article  MathSciNet  Google Scholar 

  • Ruppert R, Wand M, Carroll R (2003) Semiparametric regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Ruppert D, Wand M, Carroll J (2009) Semiparametric regression during 2003–2007. Electron J Stat 3:1193–1256

    Article  MATH  MathSciNet  Google Scholar 

  • Savu C, Trede M (2010) Hierarchies of Archimedean copulas. Quant Financ 10(3):295–304

    Article  MATH  MathSciNet  Google Scholar 

  • Schall R (1991) Estimation in generalized linear models with random effects. Biometrika 78:719–727

    Article  MATH  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231

    MathSciNet  Google Scholar 

  • Song P, Mingyao L, Yuan Y (2009) Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65:60–68

    Article  MATH  MathSciNet  Google Scholar 

  • Stein ML (1990) A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. Ann Stat 18:1139–1157

    Article  MATH  Google Scholar 

  • Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann Stat 13:1378–1402

    Article  MATH  MathSciNet  Google Scholar 

  • Wood S (2006) Generalized additive models. Chapman & Hall, London

    MATH  Google Scholar 

  • Yan J (2007) Enjoy the joy of copulas: with a package copula. J Stat Softw 21(4):1–21

    Google Scholar 

Download references

Acknowledgments

The second author gratefully acknowledges the support of this research by a grant from the German Academic Exchange Service (DAAD) and an FRDF Grant of the University of Auckland.

The authors wish to acknowledge the contribution of the NeSI high-performance computing facilities and the staff at the Centre for eResearch at the University of Auckland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Kauermann.

Appendix

Appendix

1.1 WinBUGS code: mixture of bivariate copulas

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauermann, G., Meyer, R. Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas. Comput Stat 29, 283–306 (2014). https://doi.org/10.1007/s00180-013-0454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0454-1

Keywords

Navigation