Skip to main content
Log in

Estimating the Inverse Autocorrelation Function from Outlier Contaminated Data

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

We show how a number of commonly used estimates of the inverse autocorrelation function can be modified to deal with outlier contaminated data. The robust analogues of the orthogonal and interpolation based techniques appear to be new, and provide an alternative to the robust autoregressive approach. We examine the performance of these techniques in a large scale numerical experiment. This shows significant improvements in performance in outlier contaminated data when robust techniques are used. While there was no uniformly best robust technique, our experiments support the use of the autoregressive approach to avoid catastrophic reductions in performance, and robust interpolation for short series corrupted by few outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allende, H. and Heiler, S. (1992). Recursive generalized M estimates for autoregressive moving average models. J. Time Ser. Anal., 13, 1–18.

    Article  MathSciNet  Google Scholar 

  • Baragona, R. and Battaglia, F. (1984). Estimating inverse correlations: a simulation study. Dipartimento di Statistica, Probabilitπ e Statistiche Applicate, Università ‘La Sapienza’ di Rome, serie A, 10.

  • Battaglia, F. (1986). Recursive estimation of the inverse correlation function. Statistica, 46, 75–82.

    MathSciNet  MATH  Google Scholar 

  • Battaglia, F. (1988). On the estimation of the inverse correlation function. J. Time Ser. Anal., 9, 1–10.

    Article  MathSciNet  Google Scholar 

  • Battaglia, F. (1993). Selection of a linear interpolator for time series. Statistica Sinica, 3, 255–259.

    MATH  Google Scholar 

  • Battaglia, F. and Baragona, R. (1992). Linear interpolators and the outliers problem in time series. Metron, 50, 79–97.

    MathSciNet  MATH  Google Scholar 

  • Battaglia, F. and Bhansali, R. J. (1987). Estimation of the interpolation error variance and an index of linear determinism. Biometrika, 74, 771–779.

    Article  MathSciNet  Google Scholar 

  • Bender, R. and Grouven, U. (1993). On the choice of the number of residual autocovariances for the portmanteau test of multivariate autoregressive models. Commun. Statist.-Simul. Comput., 22, 19–32.

    Article  Google Scholar 

  • Bhansali, R. J. (1980). Autoregressive and window estimates of the inverse correlation function. Biometrika, 67, 551–566.

    Article  MathSciNet  Google Scholar 

  • Bhansali, R. J. (1983a). A simulation study of autoregressive and window estimators of the inverse correlation function. J. Roy. Statist. Soc., C 32, 141–149.

    MATH  Google Scholar 

  • Bhansali, R. J. (1983b). Estimation of the order of a moving average model from autoregressive and window estimates of the inverse correlation function. J. Time Ser. Anal., 4, 137–162.

    Article  MathSciNet  Google Scholar 

  • Bhansali, R. J. (1984). Asymptotic distribution of the autoregressive estimates of the inverse correlation function. Statistica, 44, 107–116.

    MathSciNet  MATH  Google Scholar 

  • Bhansali, R. J. (1990). On a relationship between the inverse of a stationary covariance matrix and the linear interpolator. J. Appl. Probab., 27, 156–170.

    Article  MathSciNet  Google Scholar 

  • Chen, M. (1992). On the asymptotic properties of the autoregressive estimates of the inverse autocorrelation function I: strong convergence and rate. Appl. Math. J. Chin. Univ., 7, 216–227.

    MATH  Google Scholar 

  • Chen, M. (1993). On the asymptotic properties of the autoregressive estimates of the inverse autocorrelation function II: asymptotic normality. Appl. Math. J. Chin. Univ., 8, 1–16.

    Article  Google Scholar 

  • Cleveland, W. S. (1972). The inverse autocorrelations of a time series and their applications. Technometrics, 14, 277–298.

    Article  Google Scholar 

  • Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157–176.

    Article  MathSciNet  Google Scholar 

  • Efron, A. J. and Jeen, H. (1994). Detection in impulsive noise based on robust whitening. IEEE Trans. Signal. Proc., 42, 1572–1576.

    Article  Google Scholar 

  • Glendinning, R. H. (1998). Determining the order of an ARMA model from outlier contaminated data. Commun. Statist. Theory Meth., 27, 13–40.

    Article  MathSciNet  Google Scholar 

  • Glendinning, R. H. (1999). A robust Yu-Lin strategy. Bulletin of the International Statistical Institute, 52nd Session, August 10–18, 1999, Helsinki, Finland, Tome LVIII, Book 1, 393–394. Finland, 1999.

  • Hosking, J. R. M. (1980). The asymptotic distribution of the sample inverse autocorrelations of an autoregressive moving average process. Biometrika, 67, 223–226.

    Article  MathSciNet  Google Scholar 

  • Kanto, A. (1987). A formula for the inverse autocorrelation function of an autoregressive process. J. Time. Ser. Anal., 8, 311–312.

    Article  MathSciNet  Google Scholar 

  • Konishi, S. and Kitagawa, G. (1996). Generalized information criteria in model selection. Biometrika, 83, 875–890.

    Article  MathSciNet  Google Scholar 

  • Ledolter, J. (1989). The effect of additive outliers on the forecasts from ARIMA models. Int. J. Forecast., 5, 231–240.

    Article  Google Scholar 

  • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.

    Article  MathSciNet  Google Scholar 

  • Martin, R. D. (1979). Approximate conditional mean type smoothers and interpolators. In: T. Gasser and M. Rosenblatt (Eds.), Smoothing Techniques for Curve Estimation (pp. 117–143). Springer, Berlin.

    Chapter  Google Scholar 

  • Martin, R. D. (1980). Robust estimation of autoregressive models, In Directions in Time Series, Ed. D. R. Brillinger and G. C. Tiao, Haywood California: Institute of Mathematical Statistics Publications, pp. 228–262

    Google Scholar 

  • Martin, R. D. and Thomson, D. J. (1982). Robust resistant spectrum estimation. Proc. IEEE, 70, 1097–1115.

    Article  Google Scholar 

  • Martin, R. D. and Yohai, V. J. (1985). Robustness in time series and estimating ARMA models. In: E. J. Hannan, P. R. Krishnaiah and M. M. Rao, (Eds.), Handbook of Statistics5 (pp. 119–155). North-Holland, Amsterdam.

    Article  MathSciNet  Google Scholar 

  • Masarotto, G. (1987). Robust identification of autoregressive-moving average models. J. Roy. Statist. Soc., C 36, 214–220.

    MathSciNet  MATH  Google Scholar 

  • McClave, J. T. (1974). A comparison of moving average estimation procedures. Commun. Statist., 3, 865–883.

    Article  MathSciNet  Google Scholar 

  • Peña, D. and Maravall, A. (1991). Interpolation, outliers and inverse autocorrelations. Commun. Statist.-Theory Meth., 20, 3175–3186.

    Article  MathSciNet  Google Scholar 

  • Ronchetti, E. (1997). Robustness aspects of model choice. Statistica Sinica, 7, 327–338.

    MathSciNet  MATH  Google Scholar 

  • Schmid, W. (1996). An outlier test for time series based on a two-sided predictor. J. Time Ser. Anal., 17, 497–510.

    Article  MathSciNet  Google Scholar 

  • Shumway, R. H. (1982). Discriminant analysis for time series. In: P. R. Krishnaiah and L. N. Kanal (Eds.), Handbook of Statistics2 (pp. 1–46). North-Holland, Amsterdam.

    Article  MathSciNet  Google Scholar 

  • Subba Rao, T. and Gabr, M. M. (1989). The estimation of spectrum, inverse spectrum and inverse autocovariances of a stationary time series. J. Time Ser. Anal., 10, 183–202.

    Article  MathSciNet  Google Scholar 

  • Tatum, L. G. and Hurvich, C. M. (1993). High breakdown methods of time series analysis. J. Roy. Statist. Soc., 55, 881–896.

    MathSciNet  MATH  Google Scholar 

  • Yu, G-H. and Lin, Y-C. (1991). A methodology for selecting subset autoregressive time series models. J. Time Ser. Anal., 12, 363–373.

    Article  MathSciNet  Google Scholar 

  • Yuan, J. and Subba Rao, T. (1993a). Spectral estimation for random fields with applications to Markov modeling and texture classification. In: R. Chellappa and A.K. Jain (Eds.), Markov Random Fields, Theory and Applications (pp. 179–209). Academic Press, Boston.

    Google Scholar 

  • Yuan, J. and Subba Rao, T. (1993b). Characterization and estimation for multivariate Markov random fields by spectral methods. In: C. R. Rao (Ed.), Multivariate Analysis: Future Directions (pp. 467–478). Elsevier Science Publishers, Amsterdam.

    MATH  Google Scholar 

  • Wichmann, B. A. and Hill, I. D. (1982). Algorithm AS 183. An efficient and portable pseudo-random number generator. J. Roy. Statist. Soc., C 31, 188–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glendinning, R.H. Estimating the Inverse Autocorrelation Function from Outlier Contaminated Data. Computational Statistics 15, 541–565 (2000). https://doi.org/10.1007/s001800000048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800000048

Keywords

Navigation