Skip to main content
Log in

Remarks on uniqueness and strong solutions to deterministic and stochastic differential equations

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Motivated by open problems of well posedness in fluid dynamics, two topics related to strong solutions of SDEs are discussed. The first one on stochastic flows for SDEs with non regular drift helps to solve a stochastic transport equation where the corresponding deterministic equation is not well posed. The second one is a concept of strong superposition solution motivated by problems where uniqueness is not true or not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio L (2004) Transport equation and Cauchy problem for BV vector fields. Invent Math 158(2): 227–260

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosio L, Crippa G (2006) Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, UMI-Lecture Notes (to appear)

  • Bafico R, Baldi P (1982) Small random perturbation of Peano phenomena. Stochastics 6: 279–292

    MATH  MathSciNet  Google Scholar 

  • Ball JM (1997) Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equations. J Nonlinear Sci 7(5): 475–502

    Article  MATH  MathSciNet  Google Scholar 

  • Barbato D, Barsanti M, Bessaih H, Flandoli F (2006) Some rigorous results on a stochastic GOY model. J Stat Phys 125(3): 677–716

    Article  MathSciNet  Google Scholar 

  • Caruana M, Flandoli F. Lagrangian flows and continuity equation for stochastic equations driven by rough paths, in preparation

  • Castaing C, Valadier M (1977) Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol 580. Springer, Berlin

  • Crauel H (2002) Random probability measures on Polish spaces, Stochastics Monographs, vol 11. Taylor & Francis, London

  • Da Prato G, Debussche A (2003) Ergodicity for the 3D stochastic Navier–Stokes equations. J Math Pures Appl (9) 82(8): 877–947

    MATH  MathSciNet  Google Scholar 

  • Debussche A, Odasso C (2006) Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise. J Evolut Equ 6(2): 305–324

    Article  MATH  MathSciNet  Google Scholar 

  • DiPerna RJ, Lions P-L (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent Math 98(3): 511–547

    Article  MATH  MathSciNet  Google Scholar 

  • Fefferman CL (2006) Existence and smoothness of the Navier–Stokes equations, the millennium prize problems. Clay Math Inst, Cambridge, pp 57–67

  • Ferrario B, Flandoli F (2008) On a stochastic version of Prouse model in fluid dynamics. Stochastic Process Appl 118(5): 762–789

    Article  MATH  MathSciNet  Google Scholar 

  • Figalli A (2007) Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J Funct Anal (to appear)

  • Flandoli F, Gatarek D (1995) Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab Theory Related Fields 102(3): 367–391

    Article  MATH  MathSciNet  Google Scholar 

  • Flandoli F, Langa JA (2008) Markov attractors: a probabilistic approach to multivalued flows. Stoch Dyn 8(1): 59–75

    Article  MATH  MathSciNet  Google Scholar 

  • Flandoli F, Romito M (2002) Partial regularity for the stochastic Navier–Stokes equations. Trans Am Math Soc 354(6): 2207–2241

    Article  MATH  MathSciNet  Google Scholar 

  • Flandoli F, Romito M (2008) Markov selections for the 3D stochastic Navier–Stokes equations. Probab Theory Related Fields 140(3–4): 407–458

    MATH  MathSciNet  Google Scholar 

  • Flandoli F, Gubinelli M, Hairer M, Romito M (2008a) Rigorous remarks about scaling laws in turbulent fluids. Commun Math Phys 278(1): 1–29

    Article  MATH  MathSciNet  Google Scholar 

  • Flandoli F, Gubinelli M, Priola E (2008b) Well posedness for a class of ODEs and linear PDEs by stochastic perturbations, preprint

  • Krylov NV (1973) The selection of a Markov process from a Markov system of processes (Russian). Izv Akad Nauk SSSR Ser Mat 37: 691–708

    MathSciNet  Google Scholar 

  • Krylov NV, Röckner M (2005) Strong solutions of stochastic equations with singular time dependent drift. Probab Theory Relat Fields 131: 154–196

    Article  MATH  Google Scholar 

  • Kunita H (1984) Stochastic differential equations and stochastic flows of diffeomorphisms. Ecole d’t de probabilit de Saint-Flour, XII-1982. Lecture Notes in Math., vol 1097. Springer, Berlin, pp 143–303

  • Kupiainen A (2003) Statistical theories of turbulence. In: Advances in mathematical sciences and applications, Gakkotosho, Tokyo

  • Le Jan Y, Raymond O (2002) Integration of Brownian vector fields. Ann Probab 30(2): 826–873

    Article  MATH  MathSciNet  Google Scholar 

  • Mikulevicius R, Rozovskii BL (2005) Global L2-solutions of stochastic Navier–Stokes equations. Ann Probab 33(1): 137–176

    Article  MATH  MathSciNet  Google Scholar 

  • Portenko NI (1992) On the theory of diffusion processes. Probability theory and mathematical statistics (Kiev, 1991). World Sci Publ, River Edge, pp 259–267

  • Simsen J, Gentile CB (2008) On attractors for multivalued semigroups defined by generalized flows. Set Valued Anal (in press)

  • Stampacchia G (1949) Le trasformazioni funzionali che presentano il fenomeno di Peano (Italian). Atti Accad Naz Lincei Rend Cl Sci Fis Mat Nat 7: 80–84

    MATH  MathSciNet  Google Scholar 

  • Stroock DW, Varadhan SRS (1979) Multidimensional diffusion processes. Springer, Berlin

    MATH  Google Scholar 

  • Veretennikov AJu (1980) Strong solutions and explicit formulas for solutions of stochastic integral equations (Russian). Mat Sb (N.S.) 111(153), 3, 434–452

    Google Scholar 

  • Weinan E, Vanden-Eijnden E (2003) A note on generalized flows. Phys D 183(3–4): 159–174

    MATH  MathSciNet  Google Scholar 

  • Yamada T, Watanabe S (1971) On the uniqueness of solutions of stochastic differential equations. J Math Kyoto Univ 11: 155–167

    MATH  MathSciNet  Google Scholar 

  • Zvonkin AK (1974) A transformation of the phase space of a diffusion process that will remove the drift (Russian). Mat Sb (N.S.) 93(135), 129–149, 152

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Flandoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flandoli, F. Remarks on uniqueness and strong solutions to deterministic and stochastic differential equations. Metrika 69, 101–123 (2009). https://doi.org/10.1007/s00184-008-0210-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-008-0210-7

Keywords

Navigation