Skip to main content
Log in

Smoothing spline regression estimation based on real and artificial data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this article we introduce a smoothing spline estimate for fixed design regression estimation based on real and artificial data, where the artificial data comes from previously undertaken similar experiments. The smoothing spline estimate gives different weights to the real and the artificial data. It is investigated under which conditions the rate of convergence of this estimate is better than the rate of convergence of the ordinary smoothing spline estimate applied to the real data only. The finite sample size performance of the estimate is analyzed using simulated data. The usefulness of the estimate is illustrated by applying it in the context of experimental fatigue tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RA (1975) Empirical sobolev spaces. Academic Press, New York

    Google Scholar 

  • Bartle RG, Sherbert DR (2011) Introduction to real analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Beirlant J, Györfi L (1998) On the asymptotic \({L}_2\)-error in partitioning regression estimation. J Stat Plan Inference 71:93–107

    Article  MATH  Google Scholar 

  • Birman MS, Solomjak MZ (1967) Piecewise polynomial approximation of function of the class\(W^{\alpha }_{p}\). Mathematics of the USSR-Sbornik, translation of mat. Sbornik 73: 331–355, 2: 295–316

  • Boller C, Seeger T, Vormwald M (2008) Materials Database for Cyclic Loading. Fachgebiet Werkstoffmechanik, TU Darmstadt

    Google Scholar 

  • Chernoff H (1952) A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observations. Ann Math Stat 23:493–507

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L (1982) Necessary and sufficient conditions for the almost everywhere convergence of nearest neighbor regression function estimates. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 61:467–481

    Article  MathSciNet  MATH  Google Scholar 

  • Devroye L, Györfi L, Krzyżak A, Lugosi G (1994) On the strong universal consistency of nearest neighbor regression function estimates. Ann Stat 22:1371–1385

    Article  MATH  Google Scholar 

  • Devroye L, Krzyżak A (1989) An equivalence theorem for \({L}_1\) convergence of the kernel regression estimate. J Stat Plan Inference 23:71–82

    Article  MATH  Google Scholar 

  • Devroye L, Wagner TJ (1980) Distribution-free consistency results in nonparametric discrimination and regression function estimation. Ann Stat 8:231–239

    Article  MathSciNet  MATH  Google Scholar 

  • El Dsoki C (2010) Reduzierung des experimentellen Versuchsaufwandes durch künstliche neuronale Netze. Shaker-Verlag, Aachen

    Google Scholar 

  • Eubank RL (1999) Nonparametric regression and spline smoothing, 2nd edn. Marcel Dekker, New York

    MATH  Google Scholar 

  • Furer D, Kohler M, Krzyzak A (2013) Fixed design regression estimation based on real and artificial data. J Nonparametr Stat 25:223–241

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser T, Müller M-H (1979) Kernel estimation of regression functions. In: Gasser T, Rosenblatt M (eds) Smoothing techniques for curve estimation. Lecture notes in mathematics, vol 757. Springer, Heidelberg, pp 23–68

    Chapter  Google Scholar 

  • Györfi L (1981) Recent results on nonparametric regression estimate and multiple classification. Probl Control Inf Theory 10:43–52

    MATH  Google Scholar 

  • Györfi L, Kohler M, Krzyżak A, Walk H (2002) A distribution-free theory of nonparametric regression. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Kohler M, Krzyżak A (2001) Nonparametric regression estimation using penalized least squares. IEEE Trans Inf Theory 47:3054–3058

    Article  MATH  Google Scholar 

  • Kohler M, Krzyżak A (2012) Pricing of American options in discrete time using least squares estimates with complexity penalties. J Stat Plan Inference 142:2289–2307

    Article  MATH  Google Scholar 

  • Lugosi G, Zeger K (1995) Nonparametric estimation via empirical risk minimization. IEEE Trans Inf Theory 41:677–687

    Article  MathSciNet  MATH  Google Scholar 

  • Mack YP (1981) Local properties of \(k\)-nearest neighbor regression estimates. SIAM J Algebraic Discret Methods 2:311–323

    Article  MathSciNet  MATH  Google Scholar 

  • Manson SS (1965) Fatigue: a complex subject—some simple approximation. Exp Mech 5:193–226

    Article  Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9:141–142

    Article  Google Scholar 

  • Nadaraya EA (1970) Remarks on nonparametric estimates for density functions and regression curves. Theory Probab Appl 15:134–137

    Article  Google Scholar 

  • Nussbaum M (1985) Spline smoothing in regression models and asymptotic effciency in \(L_2\). Ann Stat 13:984–997

    Article  MathSciNet  MATH  Google Scholar 

  • Oden JT, Reddy JN (1976) An introduction to the mathematical theory of finite elements. Wiley, New York

    MATH  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Stone CJ (1977) Consistent nonparametric regression. Ann Stat 5:595–645

    Article  MATH  Google Scholar 

  • Stone CJ (1982) Optimal global rates of convergence for nonparametric regression. Ann Stat 10:1040–1053

    Article  MATH  Google Scholar 

  • Tomasella A, El-Dsoki C, Hanselka H, Kaufmann H (2011) A computational estimation of cyclic material properties using artificial neural networks. Proced Eng 10:439–445

    Article  Google Scholar 

  • van de Geer S (1990) Estimating a regression function. Ann Stat 25:1014–1035

    Article  Google Scholar 

  • van de Geer S (2000) Empirical processes in M-estimation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya Ser A 26:359–372

    MathSciNet  Google Scholar 

  • Zhao LC (1987) Exponential bounds of mean error for the nearest neighbor estimates of regression functions. J Multivar Anal 21:168–178

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees for various helpful comments and the German Research Foundation (DFG) for funding this project within the Collaborative Research Center 666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kohler.

Appendix

Appendix

1.1 A deterministic lemma

Lemma 5

Let \(d\ge 1, t > 0, w_1, \ldots , w_N \in \mathrm{I R}_+, x_1, \ldots , x_N \in \mathrm{I R}^d\) and \(z_1, \bar{z}_1, \ldots , z_N, \bar{z}_N \in \mathrm{I R}\). Let \(m\) be a function \(m: \mathrm{I R}^d \rightarrow \mathrm{I R}\). Let \(\mathcal{F}_n\) be a set of functions \(f:\mathrm{I R}^d \rightarrow \mathrm{I R}\) and for \(f \in \mathcal{F}_n\) let

$$\begin{aligned} pen^2\left( f\right) \ge 0 \end{aligned}$$

be a penalty term. Define

$$\begin{aligned} \bar{m}_n = \arg \min _{f \in \mathcal{F}_n} \left( \sum _{i=1}^N w_i\cdot |f (x_i) - \bar{z}_i|^2 + pen^2\left( f\right) \right) \end{aligned}$$

and

$$\begin{aligned} m_n^* = \arg \min _{f \in \mathcal{F}_n} \left( \sum _{i=1}^N w_i\cdot |f (x_i) - m(x_i) |^2 + pen^2\left( f\right) \right) \end{aligned}$$

and assume that both minima exist. Then

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i) - m(x_i)|^2 + pen^2\left( \bar{m}_n\right) \nonumber \\&\quad \ge 3 \min _{f \in \mathcal{F}_n} \left( \sum _{i=1}^N w_i\cdot |f (x_i) - m(x_i) |^2 + pen^2\left( f\right) \right) + 128 \sum _{i=1}^N w_i\cdot |z_i - \bar{z}_i|^2 +t^2 \nonumber \\ \end{aligned}$$
(30)

implies

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot \left( \bar{m}_n(x_i)-m_n^*(x_i)\right) \cdot (z_i - m(x_i))\nonumber \\&\quad \ge \frac{1}{24}\left( \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i) - m_n^*(x_i)|^2 + pen^2\left( \bar{m}_n\right) \right) + \frac{t^2}{6}. \end{aligned}$$
(31)

Proof

The result can be proven by modifying a proof in Kohler and Krzyżak (2012). For the sake of completeness we give nevertheless in the sequel a complete proof.

By definition of the estimate we have

$$\begin{aligned} \sum _{i=1}^N w_i\cdot |\bar{z}_{i}-\bar{m}_n(x_i)|^2 + pen^2\left( \bar{m}_n\right) \le \sum _{i=1}^N w_i\cdot |\bar{z}_{i} - m_n^*(x_i)|^2 + pen^2\left( m_n^*\right) , \end{aligned}$$

hence

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |\bar{z}_i- m(x_i)|^2 + 2 \sum _{i=1}^N w_i\cdot ( m(x_i)-\bar{m}_n(x_i)) \cdot (\bar{z}_i - m(x_i))\\&\quad + \sum _{i=1}^N w_i\cdot |m(x_i) - \bar{m}_n(x_i)|^2 +pen^2\left( \bar{m}_n\right) \\&\le \sum _{i=1}^N w_i\cdot |\bar{z}_i- m(x_i)|^2 + 2 \sum _{i=1}^N w_i\cdot ( m(x_i)-m^*_{n}(x_i)) \cdot (\bar{z}_i - m(x_i))\\&\quad + \sum _{i=1}^N w_i\cdot |m(x_i) - m^*_{n}(x_i)|^2 +pen^2\left( m^*_{n}\right) , \end{aligned}$$

which implies

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |m(x_i) - \bar{m}_n(x_i)|^2 \!+\! pen^2\left( \bar{m}_n\right) \!-\! \sum _{i=1}^N w_i\cdot |m(x_i) - m^*_{n}(x_i)|^2 \!-\! pen^2(m^*_{n})\\&\quad \le 2\sum _{i=1}^N w_i \cdot (\bar{z}_i - m(x_i)) \cdot \left( \bar{m}_n(x_i)-m^*_{n}(x_i)\right) \\&\quad = 2 \sum _{i=1}^N w_i \cdot (\bar{z}_i - z_i) \cdot \left( \bar{m}_n(x_i)-m^*_{n}(x_i)\right) \nonumber \\&\qquad + 2\sum _{i=1}^N w_i \cdot (z_i - m(x_i)) \cdot \left( \bar{m}_n(x_i)-m^*_{n}(x_i)\right) \\&\quad =: T_1 + T_2. \end{aligned}$$

We show next that \(T_1 \le T_2\). Assume to the contrary that this is not true. Then

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |m(x_i) - \bar{m}_n(x_i)|^2 + pen^2\left( \bar{m}_n\right) - \sum _{i=1}^N w_i\cdot |m(x_i) - m^*_{n}(x_i)|^2 - pen^2(m^*_{n})\\&\quad < 4 \sum _{i=1}^N w_i \cdot (\bar{z}_i - z_i) \cdot \left( \bar{m}_n(x_i)-m^*_{n}(x_i)\right) \\&\quad \le 4 \cdot \sqrt{ \sum _{i=1}^N w_i \cdot (\bar{z}_i - z_i)^2 } \cdot \sqrt{ \sum _{i=1}^N w_i \cdot \left( \bar{m}_n(x_i)-m^*_{n}(x_i)\right) ^2}\\&\quad \le 4 \cdot \sqrt{ \sum _{i=1}^N w_i \cdot (\bar{z}_i - z_i)^2}\\&\qquad \cdot \sqrt{ 2\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)\!-\!m(x_i)|^2 \!+\! 2pen^2\left( \bar{m}_n\right) \!+\! 2\sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 \!+\!2 pen^2(m^*_{n}) }. \end{aligned}$$

Using (30) we see that

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 \!+\! pen^2\left( \bar{m}_n\right) - \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 - pen^2(m^*_{n})\\&\quad \ge \frac{1}{2} \cdot \left( \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i) - m(x_i)|^2 \!+\! pen^2\left( \bar{m}_n\right) \right) \\&\qquad + \frac{1}{2} \!\cdot \! \left( 3 \left( \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)\!-\!m(x_i)|^2 \!+\! pen^2(m^*_{n}) \right) \!+\! 128 \!\cdot \! \sum _{i=1}^N w_i \cdot |z_i - \bar{z}_i|^2 \!+\! t^2\right) \\&\qquad - \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 - pen^2(m^*_{n})\\&\quad \ge \frac{1}{2} \cdot \left( \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 + pen^2\left( \bar{m}_n\right) \right. \nonumber \\&\left. \qquad + \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + pen^2(m^*_{n}) \right) , \end{aligned}$$

which implies

$$\begin{aligned}&\frac{1}{2} \cdot \sqrt{ \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 \!+\! pen^2\left( \bar{m}_n\right) \!+\! \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 \!+\! pen^2(m^*_{n})}\\&\quad < 4 \cdot \sqrt{2} \cdot \sqrt{ \sum _{i=1}^N w_i \cdot |z_i - \bar{z}_i|^2 } \end{aligned}$$

i.e.,

$$\begin{aligned}&\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 + pen^2\left( \bar{m}_n\right) + \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + pen^2(m^*_{n})\\&\quad < 128 \cdot \sum _{i=1}^N w_i \cdot |z_i - \bar{z}_i|^2 \end{aligned}$$

But this is a contradiction to (30), so we have indeed proved \(T_1 \le T_2\). As a consequence we can conclude from (30)

$$\begin{aligned}&4 \sum _{i=1}^N w_i\cdot (\bar{m}_n(x_i)-m_n^*(x_i)) \cdot (z_i - m(x_i))\\&\quad \ge \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 \!+\! pen^2\left( \bar{m}_n\right) \!-\! \sum _{i=1}^N w_i \!\cdot \! |m^*_{n}(x_i)-m(x_i)|^2 \!-\! pen^2(m^*_{n})\\&\quad \ge \frac{1}{3}\left( \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 + pen^2\left( \bar{m}_n\right) \right) \\&\qquad +\frac{2}{3}\left( 2\sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + 2pen^2(m^*_{n}) + t^2 \right) \\&\qquad - \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 - pen^2(m^*_{n})\\&\quad = \frac{1}{3}\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)-m(x_i)|^2 + \frac{1}{3} pen^2\left( \bar{m}_n\right) \\&\qquad +\frac{1}{3}\sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + \frac{1}{3} pen^2(m^*_{n}) + \frac{2}{3}t^2\\&\quad = \frac{1}{3}\sum _{i=1}^N w_i\cdot |\left( \bar{m}_n(x_i)- m^*_{n}(x_i)\right) - \left( m(x_i)-m^*_{n}(x_i)\right) |^2\\&\qquad + \frac{1}{3} pen^2\left( \bar{m}_n\right) +\frac{1}{3} \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + \frac{1}{3} pen^2(m^*_{n}) + \frac{2}{3}t^2\\&\quad \ge \frac{1}{6}\sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)- m^*_{n}(x_i)|^2 - \frac{1}{3}\sum _{i=1}^N w_i\cdot |m(x_i)-m^*_{n}(x_i)|^2\\&\qquad + \frac{1}{3} pen^2\left( \bar{m}_n\right) +\frac{1}{3} \sum _{i=1}^N w_i\cdot |m^*_{n}(x_i)-m(x_i)|^2 + \frac{1}{3} pen^2(m^*_{n}) + \frac{2}{3}t^2\\&\quad \ge \frac{1}{6}\left( \sum _{i=1}^N w_i\cdot |\bar{m}_n(x_i)- m^*_{n}(x_i)|^2 + pen^2\left( \bar{m}_n\right) \right) + \frac{2}{3}t^2. \end{aligned}$$

In the next to last inequality we have used, that \(a^2/2-b^2 \le (a-b)^2\) \((a,b \in \mathrm{I R})\) with \(a=\bar{m}_n(x_i)- m^*_{n}(x_i)\) and \(b=m(x_i)- m^*_{n}(x_i)\).\(\square \)

Proof (Proof of Lemma 1)

Set \(N=n+N_n\), and for \(i \in \{1, \ldots , N\}\) choose

$$\begin{aligned} \bar{z}_i = y_i \quad \text{ for } \quad i\le n \quad \text{ and } \quad \bar{z}_i = \hat{y}_i \quad \text{ for } \quad i > n \end{aligned}$$

and

$$\begin{aligned} z_i = y_i \quad \text{ for } \quad i\le n \quad \text{ and } \quad z_i = m(x_i) \quad \text{ for } \quad i > n \end{aligned}$$

in Lemma 5. Then we immediately get the assertion of Lemma 1.\(\square \)

1.2 Auxiliary results

Lemma 6

Assume that the sub-Gaussion condition (9) ist satisfied. Then there exist constants \(c_{28},t_0 \in \mathrm{I R}_{+}\) depending only on \(K\) and \(\sigma _0\) such that for all \(k \in \mathrm{I N}, t,\sigma >0\) with \(t>2^{k}\sigma ^{\frac{1}{2k}}t_0\) and with \(t\ge 2^kt_0\)

$$\begin{aligned} \mathbf{P}\left[ \sup _{f: \Vert f-m\Vert _n\le \sigma } \frac{\frac{1}{n}\sum _{i=1}^{n}\left( f\left( x_i\right) \!-\!m\left( x_i\right) \right) \left( Y_i-m\left( x_i\right) \right) }{n^{-\frac{1}{2}}\Vert f-m\Vert _n^{1-\frac{1}{2k}}\left( 1\!+\!J_k\left( f\right) \!+\!\Vert f\Vert _{\infty }\right) ^{\frac{1}{2k}}}\!>\!t\right] \!\le \! 2 \exp \left( -\frac{c_{28}t^2}{4^k\sigma ^{\frac{1}{k}}}\right) \end{aligned}$$

Proof

The proof is a modification of the proof of Lemma 6.1 in van de Geer (1990).   \(\square \)

Lemma 7

Let \(k \in \mathrm{I N}\) and \(c_{29}>0\). Then there exists a constant \(c_{30} \in \mathrm{I R}_{+}\) (independent of \(k\) and \(c_{29}\)) such that

$$\begin{aligned} \mathcal{N} _{\infty } \Bigg ( u, \{f: f \in W^k\left( \left[ 0,1\right] \right) , \Vert f\Vert _{\infty } + J_k\left( f\right) \le c_{29}\} \Bigg ) \le \exp \left( c_{30} \left( \frac{c_{29}}{u}\right) ^{\frac{1}{k}}\right) . \end{aligned}$$

Proof

See Birman and Solomjak (1967), Theorem 5.2.\(\square \)

Lemma 8

Let \(H_n\) be a set of functions \(h:[0,1] \rightarrow \mathrm{I R}\) and let \(R>0\). Suppose that \(\sup _{h\in H_n} \Vert h\Vert _n \le R\) and that the sub-Gaussian condition (9) is satisfied. Then for some constant \(c_{31}\) depending only on \(K\) and \(\sigma _0\), and for \(\delta >0\) and \(\sigma >0\) satisfying \(R>\delta /\sigma \) and

$$\begin{aligned} \sqrt{n}\delta \ge 2c_{31} \max \Bigg \{ \int _{ \delta / (8\sigma )}^{R} \log \mathcal{N} ^{1/2}_2 \left( u,H_n,x_1^n\right) du , R\Bigg \} \end{aligned}$$

we have

$$\begin{aligned} \mathbf{P}\left\{ \sup _{h \in H_n} \left| \frac{1}{n} \sum _{i=1}^n h(x_i) \cdot W_i \right| \ge \delta , \frac{1}{n} \sum _{i=1}^n W_i^2 \le \sigma ^2 \right\} \le c_{31}\exp \left( -\frac{n\delta ^2}{4c^2_{31}R^2}\right) . \end{aligned}$$

Proof

See van de Geer (2000), Corollary 8.3. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furer, D., Kohler, M. Smoothing spline regression estimation based on real and artificial data. Metrika 78, 711–746 (2015). https://doi.org/10.1007/s00184-014-0524-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-014-0524-6

Keywords

Mathematics Subject Classification

Navigation