Skip to main content
Log in

On the \(M_t/M_t/K_t+M_t\) queue in heavy traffic

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

The focus of this paper is on the asymptotics of large-time numbers of customers in time-periodic Markovian many-server queues with customer abandonment in heavy traffic. Limit theorems are obtained for the periodic number-of-customers processes under the fluid and diffusion scalings. Other results concern limits for general time-dependent queues and for time-homogeneous queues in steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ethier SN, Kurtz TG (1986) Markov processes. Characterization and convergence. Wiley, London

    Book  MATH  Google Scholar 

  • Fayolle G, Malyshev VA, Men’shikov MV (1995) Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Fleming P, Simon B, Stolyar A (1994) Heavy traffic limit for a mobile phone system loss model. In: Proceedings of the 2nd international conference on Telecommunication systems, modeling, and analysis, pp 158–176. Nashville, TN

  • Garnett O, Mandelbaum A, Reiman M (2002) Designing a call center with impatient customers. Manuf Serv Oper Manag 4(3):208–227

    Article  Google Scholar 

  • Has’minskii R (1980) Stochastic stability of differential equations. Sijthoff & Noordhoff. (Original title: Ustoicivost’ sistem differencial’nyh uravnenii pri slucainyh vozmusceniyah ih parametrov, Nauka, Moscow, 1969)

  • Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes, 2nd edn. North Holland, New York

  • Jacod J, Shiryaev A (1987) Limit theorems for stochastic processes, grundlehren der mathematischen wissenschaften (Fundamental principles of mathematical sciences), vol 288. Springer, Berlin

    Google Scholar 

  • Liptser R, Shiryayev A (1989) Theory of martingales. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Mandelbaum A, Massey W, Reiman M, Rider B, Stolyar A (2002) Queue lengths and waiting times for multiserver queues with abandonment and retrials. Telecommun Syst 21(2–4): 149–172

    Google Scholar 

  • Mandelbaum A, Massey WA, Reiman M (1998) Strong approximations for Markovian service networks. Queueing Syst 30:149–201

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Communications and control engineering series. Springer, London

    Book  Google Scholar 

  • Pang G, Talreja R, Whitt W (2007) Martingale proofs of many-server heavy-traffic limits for Markovian queues. Probab Surv 4:193–267 (electronic)

    Google Scholar 

  • Puhalskii AA The \(M_t/M_t/K_t+M_t\) queue in heavy traffic. Available at arXiv.org/abs/0807.4621

  • Skorokhod AV (1989) Asymptotic methods in the theory of stochastic differential equations. Translations of mathematical monographs. vol 78. American Mathematical Society, Providence, RI

  • Smorodinskiĭ AV (1986) Asymptotic distribution of queue length in a queueing system. Avtomat i Telemekh (2), 92–99

  • Talreja R (2009) Heavy-traffic limits for waiting times in many-server queues with abandonment. Ann Appl Probab 19(6):2137–2175. doi:10.1214/09-AAP606

    Article  MathSciNet  MATH  Google Scholar 

  • Whitt W (2004) Efficiency-driven heavy-traffic approximations for many-server queues with abandonment. Manag Sci 50(10):1449–1461

    Article  MATH  Google Scholar 

  • Whitt W (2005) Engineering solution of a basic call center model. Manag Sci 51(2):221–235

    Article  MATH  Google Scholar 

  • Zeltyn S, Mandelbaum A (2005) Call centers with impatient customers: many-server asymptotics of the \(M/M/n+G\) queue. Queueing Syst 51(3–4):361–402

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am thankful to the referees for the careful reading of the manuscript and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii A. Puhalskii.

Appendix

Appendix

Lemma 5

Let \((F(t),\,t\in \mathbb R _+)\) be a function of locally bounded variation and \((f(t),\,t\in \mathbb R _+)\) be a locally bounded Lebesgue measurable function. If a locally integrable function \((y(t),\,t\in \mathbb R _+)\) is such that \(y(t)\prec F(t)-\int _0^t f(s)y(s)\,ds\), then

$$\begin{aligned} y(t)\le e^{-\int _0^t f(s)\,ds}F(0)+e^{-\int _0^t f(s)\,ds}\int \limits _0^t e^{\int _0^s f(u)\,du}\,dF(s). \end{aligned}$$

Proof

Let \(g(t)=F(t)-\int _0^t f(s)y(s)\,ds-y(t)\). The function \((g(t))\) is nondecreasing, \(g(0)\ge 0\), and

$$\begin{aligned} y(t)= F(t)-g(t)-\int \limits _0^t f(s)y(s)\,ds. \end{aligned}$$

Hence,

$$\begin{aligned} y(t)&= e^{-\int _0^t f(s)\,ds}(F(0)-g(0))+e^{-\int _0^t f(s)\,ds}\int \limits _0^t e^{\int _0^s f(u)\,du}\,d(F(s)-g(s))\\&\le e^{-\int _0^t f(s)\,ds}F(0)+e^{-\int _0^t f(s)\,ds}\int \limits _0^t e^{\int _0^s f(u)\,du}\,dF(s). \end{aligned}$$

\(\square \)

The next lemma provides the bounds that have been used for the analysis of large-time behaviour. Let \(T>0\) and \( \sigma ^n_s=|\alpha ^n_s-\gamma ^n_s(q_s-\kappa _s)^+-\beta ^n_s(q_s\wedge \kappa _s)| +|(\theta ^n_s-\mu ^n_s)\delta ^n_s|.\) Let me recall that \(q_t\) is defined by (2.6).

Lemma 6

  1. 1.
    1. (a)

      If the functions \((\lambda _t,\,t\in \mathbb R _+), (\mu _t,\,t\in \mathbb R _+)\), and \((\theta _t,\,t\in \mathbb R _+)\) are \(T\)-periodic and \(\int _0^T(\mu _s\wedge \theta _s)\,ds>0\) , then, for all \(t\in \mathbb R _+\),

      $$\begin{aligned} q_t\le e^{-\lfloor t/T\rfloor \int _0^T (\mu _s\wedge \theta _s)\,ds}\, q_0 +\frac{ e^{\int _0^{T} (\mu _s\wedge \theta _s)\,ds}}{1-e^{-\int _0^{T} (\mu _s\wedge \theta _s)\,ds}}\int \limits _{0}^{T}\lambda _s\,ds. \end{aligned}$$
    2. (b)

      If the functions \((\lambda ^n_t,\,t\in \mathbb R _+), (\mu ^n_t,\,t\in \mathbb R _+)\), and \((\theta ^n_t,\,t\in \mathbb R _+)\) are \(T\)-periodic and \(\int \limits _0^T(\mu ^n_s\wedge \theta ^n_s)\,ds>0\) , then, for all \(t\in \mathbb R _+\) and \(V>0\),

      $$\begin{aligned} \mathbf E Q^n_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,&\le e^{-\lfloor t/T\rfloor \int _0^T (\mu ^n_s\wedge \theta ^n_s)\,ds} \, \mathbf E Q^n_0\,\mathbf 1 _{\{Q^n_0\le V\}}\,\\&+ \frac{ e^{\int _0^{T} (\mu ^n_s\wedge \theta ^n_s)\,ds}}{1-e^{-\int _0^{T} (\mu ^n_s\wedge \theta ^n_s)\,ds}}\int \limits _{0}^{T}\lambda ^n_s\,ds. \end{aligned}$$

      .

    3. (c)

      If the functions \((\lambda ^n_t,\,t\in \mathbb R _+), (\mu ^n_t,\,t\in \mathbb R _+), (\theta ^n_t,\,t\in \mathbb R _+), (\lambda _t,\,t\in \mathbb R _+), (\mu _t,\,t\in \mathbb R _+)\), and \((\theta _t,\,t\in \mathbb R _+)\) are \(T\)-periodic, \(\int _0^T(\mu _s\wedge \theta _s)\,ds>0\) , and, for some \(\epsilon >0, \int _0^{T}\left(2(\mu ^n_s\wedge \theta ^n_s)- \epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})\right)\,ds>0\), then, for all \(t\in \mathbb R _+\) and \(V>0\),

      $$\begin{aligned}&\mathbf E (X^n_t)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\\&\quad \le e^{-\lfloor t/T\rfloor \int _0^T \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds +\int _0^T |2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})|\,ds}\\&\qquad \times \mathbf E (X^n_0)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\, + \frac{ e^{2\int _0^{T}|2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})|\,ds}}{1-e^{-\int _0^{T}\left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})\right)\,ds}}\\&\qquad \times \int \limits _0^{T}\left(\frac{1}{\epsilon }\,\sigma ^n_s +\frac{\lambda ^n_s}{n} \right. \left. + (\mu ^n_s\vee \theta ^n_s)\sup _{u\in \mathbb R _+}q_u+ \frac{1}{2\sqrt{n}}(\mu ^n_s\vee \theta ^n_s)\right)\,ds. \end{aligned}$$
  2. 2.
    1. (a)

      If \(\sup _{t\in \mathbb R _+}\lambda _t<\infty \) and \(\inf _{t\in \mathbb R _+}( \mu _t\wedge \theta _t)>0\), then, for all \(t\in \mathbb R _+\),

      $$\begin{aligned} q_t\le e^{-\int _0^t (\mu _s\wedge \theta _s)\,ds} q_0+ \frac{\sup _{s\in \mathbb R _+}\lambda _s}{\inf _{s\in \mathbb R _+} (\theta _s\wedge \mu _s)}. \end{aligned}$$
    2. (b)

      If \(\sup _{t\in \mathbb R _+}\lambda ^n_t<\infty \) and \(\inf _{t\in \mathbb R _+}( \mu ^n_t\wedge \theta ^n_t)>0\), then, for all \(t\in \mathbb R _+\) and \(V>0\) ,

      $$\begin{aligned} \mathbf E Q^n_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,\le e^{-\int _0^t (\mu ^n_s\wedge \theta ^n_s)\,ds}\, \mathbf E Q^n_0\,\mathbf 1 _{\{Q^n_0\le V\}}\, +\frac{\sup _{s\in \mathbb R _+}\lambda ^n_s}{\inf _{s\in \mathbb R _+} (\theta ^n_s\wedge \mu ^n_s)}. \end{aligned}$$
    3. (c)

      If \(\sup _{t\in \mathbb R _+}\lambda _t<\infty , \inf _{t\in \mathbb R _+}( \mu _t\wedge \theta _t)>0, \sup _{t\in \mathbb R _+}\lambda ^n_t<\infty , \sup _{t\in \mathbb R _+}\theta ^n_t<\infty , \sup _{t\in \mathbb R _+}\mu ^n_t<\infty , \sup _{t\in \mathbb R _+}\sigma ^n_t<\infty \), and \(\inf _{t\in \mathbb R _+}\left(2(\mu ^n_t\wedge \theta ^n_t)-\epsilon \,\sigma ^n_t\right.\left.- (\mu ^n_t\vee \theta ^n_t)/(2\sqrt{n})\right)>0\) for some \(\epsilon >0\) , then, for all \(t\in \mathbb R _+\) and \(V>0\),

      $$\begin{aligned}&\mathbf E (X^n_t)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\\&\quad \le e^{-\int _0^t \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds} \,\mathbf E (X^n_0)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\, \\&\qquad + \dfrac{\sup _{s\in \mathbb R _+}\left(\sigma ^n_s/\epsilon +\lambda ^n_s/n+ (\mu ^n_s\vee \theta ^n_s)q_s+ (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})\right)}{\inf _{s\in \mathbb R _+}\left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \, \sigma ^n_s -(\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)}. \end{aligned}$$

Proof

Let me start with part 1(b). Since \(Q^n_t\le Q^n_0+A^n_t\) by (2.1), I have that \(\mathbf E Q^n_t \,\mathbf 1 _{\{Q^n_0\le V\}}\,\le V+\int _0^t\lambda ^n_s\,ds\). By Lemma 1, the processes \((M^{n,A}_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,,\,t\in \mathbb R _+), (M^{n,R}_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,,\,t\in \mathbb R _+)\), and \((M^{n,B}_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,,\,t\in \mathbb R _+)\) are \(\mathbf F ^n\)-locally square integrable martingales with respective predictable quadratic variation processes \((\,\mathbf 1 _{\{Q^n_0\le V\}}\,\int _0^t\lambda ^n_s\,ds\,,t\in \mathbb R _+), (\,\mathbf 1 _{\{Q^n_0\le V\}}\,\int _0^t\theta ^n_s\, (Q^n_s-K^n_s)^+\,ds,\,t\in \mathbb R _+)\), and \((\,\mathbf 1 _{\{Q^n_0\le V\}}\,\int _0^t\mu ^n_s\, (Q^n_s\wedge K^n_s)\,ds,\,t\in \mathbb R _+)\). Since the latter processes are of finite expectation, I obtain that \(\mathbf E (M^{n,A}_t)^2\,\mathbf 1 _{\{Q^n_0\le V\}}\,<\infty , \mathbf E (M^{n,R}_t)^2\,\mathbf 1 _{\{Q^n_0\le V\}}\,<\infty \), and \(\mathbf E (M^{n,B}_t)^2\,\mathbf 1 _{\{Q^n_0\le V\}}\,<\infty \). In particular, \((M^{n,A}_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,,\,t\in \mathbb R _+), (M^{n,R}_t\,\mathbf 1 _{\{Q^n_0\!\le \! V\}}\,,t\!\in \!\mathbb R _+)\), and \((M^{n,B}_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,,t\in \mathbb R _+)\) are martingales. By (2.3),

$$\begin{aligned} \mathbf E Q^n_t\,\mathbf 1 _{\{Q^n_0\!\le \! V\}}\,\!\prec \! \mathbf E Q^n_0\,\mathbf 1 _{\{Q^n_0\le V\}}\,\!+\! \int \limits _0^t\lambda ^n_s ds\!-\!\int \limits _0^t(\mu ^n_s\wedge \theta ^n_s)\, \mathbf E Q^n_s\,\mathbf 1 _{\{Q^n_0\le V\}}\,\,ds. \end{aligned}$$
(5.1)

By Lemma 5,

$$\begin{aligned}&\mathbf E Q^n_t\,\mathbf 1 _{\{Q^n_0\le V\}}\,\nonumber \\&\quad \le e^{-\int _0^t (\mu ^n_s\wedge \theta ^n_s)\,ds}\,\mathbf E Q^n_0\,\mathbf 1 _{\{Q^n_0\le V\}}\, \!+\!e^{-\int _0^t (\mu ^n_s\wedge \theta ^n_s)\,ds}\int \limits _0^t e^{\int _0^s (\mu ^n_u\wedge \theta ^n_u)\,du}\lambda ^n_s\,ds.\quad \end{aligned}$$
(5.2)

If \(vT\le t<(v+1)T\), where \(v\in \mathbb Z _+\), then by \(T\)-periodicity,

$$\begin{aligned}&e^{-\int _0^t (\mu ^n_s\wedge \theta ^n_s)\,ds}\int \limits _0^t e^{\int _0^s (\mu ^n_u\wedge \theta ^n_u)\,du}\lambda ^n_s\,ds\\&\quad \le e^{-\int _0^{vT} (\mu ^n_s\wedge \theta ^n_s)\,ds}\sum _{i=1}^{v+1} e^{\int _0^{iT} (\mu ^n_u\wedge \theta ^n_u)\,du}\int \limits _{(i-1)T}^{iT}\lambda ^n_s\,ds\\&\quad =e^{-v\int _0^{T} (\mu ^n_s\wedge \theta ^n_s)\,ds}\sum _{i=1}^{v+1} e^{i\int _0^{T} (\mu ^n_u\wedge \theta ^n_u)\,du}\int \limits _{0}^{T}\lambda ^n_s\,ds\\&\quad =e^{-(v-1)\int _0^{T} (\mu ^n_s\wedge \theta ^n_s)\,ds} \frac{ e^{(v+1)\int _0^{T} (\mu ^n_u\wedge \theta ^n_u)\,du}-1}{e^{\int _0^{T} (\mu ^n_u\wedge \theta ^n_u)\,du}-1}\int \limits _{0}^{T}\lambda ^n_s\,ds\\&\quad \le \frac{ e^{2\int _0^{T} (\mu ^n_u\wedge \theta ^n_u)\,du}}{e^{\int _0^{T} (\mu ^n_u\wedge \theta ^n_u)\,du}-1}\int \limits _{0}^{T}\lambda ^n_s\,ds. \end{aligned}$$

In addition, \(e^{-\int _0^t (\mu ^n_s\wedge \theta ^n_s)\,ds}\le e^{-\lfloor t/T\rfloor \int _0^T (\mu ^n_s\wedge \theta ^n_s)\,ds}\). Part 1(b) has been proved.

Part 1(a) follows by a similar argument if one observes that by (2.6),

$$\begin{aligned} q_t\prec q_0+\int \limits _0^t\lambda _s\,ds -\int \limits _0^t(\theta _s\wedge \mu _s)q_s\,ds\, \end{aligned}$$

so that, by Lemma 5,

$$\begin{aligned} q_t\le e^{-\int _0^t (\theta _s\wedge \mu _s)\,ds}q_0+ e^{-\int _0^t (\theta _s\wedge \mu _s)\,ds} \int \limits _0^te^{\int _0^s (\theta _u\wedge \mu _u)\,du}\,\lambda _s\,ds. \end{aligned}$$
(5.3)

In order to prove part 1(c), let me note that by (2.13),

$$\begin{aligned} (X^n_t)^2&= (X^n_0)^2+ 2\int \limits _0^t X^n_{s-}\,dX^n_s+\sum _{0<s\le t}\left( \Delta X^n_s\right) ^2= (X^n_0)^2+ 2\int \limits _0^t\alpha ^n_s X^n_{s}\,ds\\&\quad -2\int \limits _0^t\theta ^n_sX^n_{s}\left(\left(X^n_s-\delta ^n_s+ \sqrt{n}( q_s-\kappa _s)\right)^+ -\sqrt{n}(q_s-\kappa _s)^+\right)\,ds\\&\quad -2\int \limits _0^t\gamma ^n_s(q_s-\kappa _s)^+X^n_s\,ds\\&\quad -2 \int \limits _0^t\mu ^n_sX^n_{s}\left(\left(X^n_s+ \sqrt{n} q_s\right)\wedge (\delta ^n_s+ \sqrt{n}\kappa _s) - \sqrt{n}\,(q_s\wedge \kappa _s)\right)\,ds\\&\quad -2\int \limits _0^t\beta ^n_s(q_s\wedge \kappa _s)X^n_s\,ds\\&\quad +\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,A}_s- \frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,R}_s -\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,B}_s\\&\quad +\frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,A}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,R}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,B}_s\right) ^2. \end{aligned}$$

On noting that

$$\begin{aligned}&\theta ^n_sX^n_{s}\left(\left(X^n_s-\delta ^n_s+ \sqrt{n}( q_s-\kappa _s)\right)^+ -\sqrt{n}(q_s-\kappa _s)^+\right)\\&\quad +\mu ^n_sX^n_{s}\left(\left(X^n_s+ \sqrt{n} q_s\right)\wedge (\delta ^n_s \right. \left.\quad + \sqrt{n}\kappa _s) - \sqrt{n}\,(q_s\wedge \kappa _s)\right)\\&\quad \ge \left( \mu ^n_s\wedge \theta ^n_s\right) \left( X^n_s\right) ^2- \left| {\left( \theta ^n_s-\mu ^n_s\right) \delta ^n_sX^n_s}\right| \,, \end{aligned}$$

I obtain that, for \(\epsilon >0\),

$$\begin{aligned} \left( X^n_t\right) ^2&\prec \left( X^n_0\right) ^2+ 2\int \limits _0^t\sigma ^n_s\left| { X^n_{s}}\right| \,ds -2\int \limits _0^t\left( \mu ^n_s\wedge \theta ^n_s\right) \left( X^n_{s}\right) ^2\,ds\\&+\,\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,A}_s- \frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,R}_s -\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,B}_s\\&+\,\frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,A}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,R}_s\right) ^2 + \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,B}_s\right) ^2\\&\prec \left( X^n_0\right) ^2+ \frac{1}{\epsilon }\,\int \limits _0^t\sigma ^n_s\,ds -\int \limits _0^t\left(2\left( \mu ^n_s\wedge \theta ^n_s\right) -\epsilon \sigma ^n_s\right) \left( X^n_{s}\right) ^2\,ds\\&+\,\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,A}_s- \frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,R}_s -\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\,dM^{n,B}_s\\&+\,\frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,A}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,R}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,B}_s\right) ^2. \end{aligned}$$

Hence, for \(V>0\),

$$\begin{aligned} \left( X^n_t\right) ^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,&\prec \left( X^n_0\right) ^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,+ \frac{1}{\epsilon }\int \limits _0^t\sigma ^n_s\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\,ds\nonumber \\&-\int \limits _0^t\left(2\left( \mu ^n_s\wedge \theta ^n_s\right) -\epsilon \,\sigma ^n_s\right)(X^n_{s})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\,ds\nonumber \\&+\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\, dM^{n,A,V}_s- \frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\, \,dM^{n,R,V}_s\nonumber \\&-\frac{2}{\sqrt{n}}\,\int \limits _0^t X^n_{s-}\, \,dM^{n,B,V}_s +\frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,A,V}_s\right) ^2\nonumber \\&+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,R,V}_s\right) ^2+ \frac{1}{n}\,\sum _{0<s\le t}\left( \Delta M^{n,B,V}_s\right) ^2\,\, \end{aligned}$$
(5.4)

where \(M^{n,i,V}_s=M^{n,i}_s\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\), for \(i=A,R,B\).

By Lemma 1, the processes \(M^{n,i,V}=(M^{n,i,V}_t,\,t\in \mathbb R _+)\) are \(\mathbf F ^n\)-locally square integrable martingales with predictable quadratic variation processes \(\langle M^{n,i,V}\rangle =\langle M^{n,i}\rangle \,\mathbf 1 _{\{|X^n_0|\le V\}}\,\). Since \(Q^n_t\le Q^ n_0+A^n_t\) by (2.1) and \(\mathbf E (A^n_t)^2=\int _0^t\lambda ^n_s\,ds+\left(\int _0^t\lambda ^n_s\,ds\right)^2<\infty \), I have that \(\mathbf E (Q^n_t)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,<\infty \). Hence, by (2.4a), (2.4b), (2.4c), \(\mathbf E \langle M^{n,i,V}\rangle _t<\infty \), which implies that \(\mathbf E \left(\sup _{s\le t}\left( M^{n,i,V}_s\right) ^2\right)<\infty \), that the \(M^{n,i,V}\) are \(\mathbf F ^n\)-martingales, and that \(\mathbf E ( M^{n,i,V}_t)^2=\mathbf E \langle M^{n,i,V}\rangle _t\). Consequently, the processes \(\left(\int _0^{t} X^n_{s-}\, \,dM^{n,i,V}_s,\,t\in \mathbb R _+\right)\) are \(\mathbf F ^n\)-martingales. Since the \(M^{n,i,V}\) are purely discontinuous locally square integrable martingales by being of locally bounded variation, \(\mathbf E \sum _{0<s\le t}(\Delta M^{n,i,V}_s)^2= \mathbf E \langle M^{n,i,V}\rangle _{t}\).

On taking expectations in (5.4),

$$\begin{aligned} \mathbf E (X^n_{t})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,&\prec \mathbf E (X^n_{0})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\, + \frac{1}{\epsilon }\int \limits _0^t\sigma ^n_s\,ds +\frac{1}{n}\,\left(\mathbf E \left\langle M^{n,A}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\, \right.\\&\left. +\mathbf E \left\langle M^{n,R}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\, +\mathbf E \left\langle M^{n,B}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\right)\\&- \int \limits _0^t\left(2\left( \mu ^n_s\wedge \theta ^n_s\right) -\epsilon \,\sigma ^n_s\right) \mathbf E (X^n_{s})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\,ds. \end{aligned}$$

By (2.4a), (2.4b), (2.4c), and (2.12),

$$\begin{aligned}&\frac{1}{n}\,\left(\mathbf{E }\left\langle M^{n,A}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\, +\mathbf{E }\left\langle M^{n,R}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\, +\mathbf{E }\left\langle M^{n,B}\right\rangle _{t}\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\right)\\&\quad \prec \int \limits _0^t\frac{\lambda ^n_s}{n}\,ds +\int \limits _0^{t}\left( \mu ^n_s\vee \theta ^n_s\right) \frac{\mathbf{E }Q^n_s\,\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\,}{n} ds\\&\quad \prec \int \limits _0^t\frac{\lambda ^n_s}{n}\,ds +\int \limits _0^{t}\left( \mu ^n_s\vee \theta ^n_s\right) \left(\frac{\mathbf{E }X^n_s\,\mathbf 1 _{\{|X^n_0|\le V\}}\, }{\sqrt{n}}+q_s\right)\,ds\\&\quad \prec \int \limits _0^t\frac{\lambda ^n_s}{n}\,ds+ \int \limits _0^{t}\left( \mu ^n_s\vee \theta ^n_s\right) \left(q_s+ \frac{1}{2\sqrt{n}}\right)\,ds\\&\qquad +\frac{1}{2\sqrt{n}}\int \limits _0^{t}\left( \mu ^n_s\vee \theta ^n_s\right) \,\mathbf{E }(X^n_s)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\, \,ds . \end{aligned}$$

Thus, for \(t\in \mathbb R _+\),

$$\begin{aligned}&\mathbf E (X^n_{t})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\\&\quad \prec \mathbf{E }(X^n_0)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,+ \frac{1}{\epsilon }\int \limits _0^t\sigma ^n_s\,ds +\int \limits _0^t\frac{\lambda ^n_s}{n}\,ds\\&\quad \quad + \int \limits _0^{t}\left( \mu ^n_s\vee \theta ^n_s\right) \left(q_s+ \frac{1}{2\sqrt{n}}\right)\,ds\\&\quad \quad - \int \limits _0^t\left(2\left( \mu ^n_s\wedge \theta ^n_s\right) -\epsilon \,\sigma ^n_s- \frac{1}{2\sqrt{n}}\left( \mu ^n_s\vee \theta ^n_s\right) \right)\mathbf{E }(X^n_{s})^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\,ds. \end{aligned}$$

By Lemma 5,

$$\begin{aligned}&\mathbf E (X^n_t)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\nonumber \\&\quad \le e^{-\int _0^t \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds} \mathbf E (X^n_0)^2\,\mathbf 1 _{\{|X^n_0|\le V\}}\,\nonumber \\&\quad \quad +\,e^{-\int _0^t \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds}\int \limits _0^te^{\int _0^s\left(2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/(2\sqrt{n})\right)\,du}\nonumber \\&\quad \quad \times \left(\frac{\sigma ^n_s}{\epsilon }\, +\frac{\lambda ^n_s}{n}+ (\mu ^n_s\vee \theta ^n_s)\left(q_s+ \frac{1}{2\sqrt{n}}\right)\right)\,ds. \end{aligned}$$
(5.5)

In analogy with the earlier argument, if \(vT\le t<(v+1)T\), where \(v\in \mathbb Z _+\), recalling that \(\sup _{u\in \mathbb R _+}q_u<\infty \) by part 1(a),

$$\begin{aligned}&e^{-\int _0^t \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds}\int \limits _0^te^{\int _0^s\left(2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/(2\sqrt{n})\right)\,du}\\&\quad \quad \times \left(\frac{\,\sigma ^n_s}{\epsilon } +\frac{\lambda ^n_s}{n} + (\mu ^n_s\vee \theta ^n_s)\left(q_s+ \frac{1}{2\sqrt{n}}\right)\right)\,ds\\&\quad \le e^{-v\int _0^{T} \left(2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n}) \right)\,ds+2\int _0^{T} |2(\mu ^n_s\wedge \theta ^n_s)-\epsilon \,\sigma ^n_s- (\mu ^n_s\vee \theta ^n_s)/(2\sqrt{n})|\,ds}\\&\quad \quad \times \sum _{i=0}^{v}e^{i\int \limits _0^{T}\left(2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/(2\sqrt{n})\right)\,du}\int \limits _0^{T}\left(\frac{1}{\epsilon }\,\sigma ^n_s +\frac{\lambda ^n_s}{n}+ (\mu ^n_s\vee \theta ^n_s) \right.\\&\quad \quad \times \left.\left(\sup _{u\in \mathbb R _+}q_u+ \frac{1}{2\sqrt{n}}\right)\right)\,ds\\&\quad \le \frac{ e^{ 2\int _0^{T}|2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/(2\sqrt{n})|\,du}}{1-e^{-\int _0^{T}\left(2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/(2\sqrt{n})\right)\,du}} \int \limits _0^{T}\left(\frac{1}{\epsilon }\,\sigma ^n_s +\frac{\lambda ^n_s}{n}+ (\mu ^n_s\vee \theta ^n_s)\right.\\&\quad \quad \times \left.\left(\sup _{u\in \mathbb R _+}q_u+ \frac{1}{2\sqrt{n}}\right)\right)\,ds\,, \end{aligned}$$

where the last inequality uses the fact that \(\int _0^{T}\left(2(\mu ^n_u\wedge \theta ^n_u)-\epsilon \,\sigma ^n_u- (\mu ^n_u\vee \theta ^n_u)/\right.\left.(2\sqrt{n})\right)\,du>0\). The latter expression furnishes the required bound. Part 1 has been proved.

The assertions of part 2 also follow from the respective inequalities (5.2), (5.3), and (5.5). For instance part 2(b) is obtained by applying the bound

$$\begin{aligned} \int \limits _0^t e^{\int _0^s (\theta ^n_u\wedge \mu ^n_u)\,du}\,\lambda ^n_s\,ds\le \frac{\sup _{t\in \mathbb R _+}\lambda ^n_t}{\inf _{t\in \mathbb R _+} (\theta ^n_t\wedge \mu ^n_t)}\,\left(e^{\int _0^t (\theta ^n_s\wedge \mu ^n_s)\,ds}-1\right). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puhalskii, A.A. On the \(M_t/M_t/K_t+M_t\) queue in heavy traffic. Math Meth Oper Res 78, 119–148 (2013). https://doi.org/10.1007/s00186-013-0435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-013-0435-8

Keywords

Navigation