Skip to main content
Log in

A synthetic Earth Gravity Model Designed Specifically for Testing Regional Gravimetric Geoid Determination Algorithms

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A synthetic [simulated] Earth gravity model (SEGM) of the geoid, gravity and topography has been constructed over Australia specifically for validating regional gravimetric geoid determination theories, techniques and computer software. This regional high-resolution (1-arc-min by 1-arc-min) Australian SEGM (AusSEGM) is a combined source and effect model. The long-wavelength effect part (up to and including spherical harmonic degree and order 360) is taken from an assumed errorless EGM96 global geopotential model. Using forward modelling via numerical Newtonian integration, the short-wavelength source part is computed from a high-resolution (3-arc-sec by 3-arc-sec) synthetic digital elevation model (SDEM), which is a fractal surface based on the GLOBE v1 DEM. All topographic masses are modelled with a constant mass-density of 2,670 kg/m3. Based on these input data, gravity values on the synthetic topography (on a grid and at arbitrarily distributed discrete points) and consistent geoidal heights at regular 1-arc-min geographical grid nodes have been computed. The precision of the synthetic gravity and geoid data (after a first iteration) is estimated to be better than 30 μ  Gal and 3 mm, respectively, which reduces to 1 μ  Gal and 1 mm after a second iteration. The second iteration accounts for the changes in the geoid due to the superposed synthetic topographic mass distribution. The first iteration of AusSEGM is compared with Australian gravity and GPS-levelling data to verify that it gives a realistic representation of the Earth’s gravity field. As a by-product of this comparison, AusSEGM gives further evidence of the north–south-trending error in the Australian Height Datum. The freely available AusSEGM-derived gravity and SDEM data, included as Electronic Supplementary Material (ESM) with this paper, can be used to compute a geoid model that, if correct, will agree to in 3 mm with the AusSEGM geoidal heights, thus offering independent verification of theories and numerical techniques used for regional geoid modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler RJ (1981) The geometry of random fields. Wiley, New York, 280 pp

    Google Scholar 

  • Ågren J (2004). Regional geoid determination methods for the era of satellite gravimetry: numerical investigations using synthetic Earth gravity models, doctoral dissertation. Department of Infrastructure Royal Institute of Technology (KTH), Stockholm 246 pp

    Google Scholar 

  • Claessens SJ (2003) A synthetic Earth model. Delft University Press, Delft, 61 pp

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planetary Inter 25(4):297–356

    Article  Google Scholar 

  • Ellman A (2005). Two deterministic and three stochastic modifications of Stokes’s formula: a case study for the Baltic countries. J Geod 79(1–2):11–23 doi: 10.1007/s00190-005-0438-1

    Article  Google Scholar 

  • Featherstone WE (1999) Progress report for IAG SSG3.177 Synthetic modelling of the Earth’s gravity field. In: Anderson OB (ed) International association of geodesy, Travaux http://www.gfy.ku.dk/∼ iag/Travaux_99/ssg3177.htm

  • Featherstone WE (2002a). Prospects for the Australian height datum and geoid model. In: Adam J, Schwarz K-P (eds). Vistas for Geodesy in the New Millennium. Springer, Berlin Heidelberg New York, pp 96–101

    Chapter  Google Scholar 

  • Featherstone WE (2002b). Tests of two forms of Stokes’s integral using a synthetic gravity field based on spherical harmonics. In: Grafarend EW, Krumm FW, Schwarze VS (eds). Geodesy – The challenge for the Third Millennium. Springer, Berlin Heidelberg New York, pp 163–171

    Google Scholar 

  • Featherstone WE (2004) Evidence of a north–south trend between AUSGeoid98 and the AHD in southwest Australia. Surv Rev 37(291):334–343

    Article  Google Scholar 

  • Featherstone WE, Olliver JG (1997) A method to validate gravimetric geoid computation software based on Stokes’s integral. J Geod 72(3):154–160 doi: 10.1007/s001900050125

    Article  Google Scholar 

  • Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geod 75(5–6):313–330 doi: 10.1007/s001900100177

    Article  Google Scholar 

  • Featherstone WE, Holmes SA, Kirby JF, Kuhn M (2004) Comparison of the remove-compute-restore and university of New Brunswick techniques to geoid determination over Australia, and the inclusion of Wiener-type filters in the reference field contribution. Journal of Surveying Engineering 130(1):40-47 DOI: 10.1061/(ASCE)0733-9453(2004)130:1(40)

    Article  Google Scholar 

  • Haagmans R (2000) A synthetic Earth model for use in geodesy. J Geod 74(7–8):503–511 doi: 10.1007/s001900000112

    Article  Google Scholar 

  • Hastings DA, Dunbar PK (1998) Development and assessment of the global land one-km base elevation digital elevation model (GLOBE). ISPRS Arch 32(4):218–221 http://www.ngdc.noaa.gov/mgg/topo/globe.html

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco, 364 pp

    Google Scholar 

  • Hilton RD, Featherstone WE, Berry PAM, Johnston CPD, Kirby JF (2003) Comparison of digital elevation models over Australia and external validation using ERS-1 satellite radar altimetry. Aust J Earth Sci 50(2):157–168 doi: 10.1046/j.1440-0952.2003.00982.x

    Article  Google Scholar 

  • Hutchinson M (2001) GeoData 9 second DEM version 2: a digital elevation model of Australia with a grid spacing of nine seconds in longitude and latitude. Data user guide, 2nd edn. Geoscience Australia, Canberra, Australia, 43 pp http://www.ga.gov.au/image_cache/ GA4783.pdf

  • Jekeli C (1988) The exact transformation between ellipsoidal and spherical harmonic expansions. manuscr geod 13(2):106–113

    Google Scholar 

  • Kuhn M (2003) Geoid determination with density hypotheses from isostatic models and geological information. J Geod 77(1–2):50–65. doi: 10.1007/s00190-002-0297-y

    Article  Google Scholar 

  • Kuhn M, Seitz K (2005). Evaluation of Newton′s integral in space and frequency domain. In: Sansò F (eds). A Window on the Future of Geodesy. Springer, Berlin Heidelberg New York, pp 386–391

    Chapter  Google Scholar 

  • Kuhn M, WE Featherstone (2005). Construction of a synthetic Earth gravity model by forward gravity modelling. In: Sansò F (eds). A Window on the Future of Geodesy. Springer, Berlin Heidelberg New York, pp 350–355

    Chapter  Google Scholar 

  • Kuroishi Y, Ando H, Fukuda Y (2002) A new hybrid geoid model for Japan, GSIGEO2000. J Geod 76(8):428–436 doi: 10.1007/s00190-002-0266-5

    Article  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861, NASA/TP-1998-206861, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichman, Karlsruhe, 497 pp

    Google Scholar 

  • Nahavandchi H, Sjöberg LE (2001) Precise geoid determination over Sweden using the Stokes-Helmert method and improved topographic corrections. J Geod 75(2–3):74–88 doi: 10.1007/s001900000154

    Article  Google Scholar 

  • Novák P, Vaníček P, Véronneau M, Holmes S, Featherstone WE (2001) On the accuracy of modified Stokes’s integration in high-frequency gravimetric geoid determination. J Geod 74(11):644–654 doi: 10.1007/s001900000126

    Article  Google Scholar 

  • Pail R (2000) Synthetic global gravity model for planetary bodies and applications in satellite gravity gradiometry. PhD Thesis, Technical University of Graz

  • Roelse A, Granger HW, Graham JW (1971) The adjustment of the Australian levelling survey 1970–1971. In: Technical Report 12, Division of National Mapping, Canberra, 81 pp

  • Rummel R, Rapp HR, Sünkel H (1988) Comparison of global topographic/isostatic models to the Earth’s observed gravity field, Rep 388, Deptartment Geodeic Science and Surveying Ohio State University, Columbus, 33 pp

    Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme – spectral characteristics of physical geodesy. manuscr geod 20(5):379– 385

    Google Scholar 

  • Schwarz KP (1984). Data types and their spectral properties. In: Schwarz K-P (eds). Local gravity field approximation. Proc Int Summer School, Beijing, pp 1–66

    Google Scholar 

  • Smith DA, Roman DR (2001) GEOID99 and G99SSS: 1-arc-min geoid models for the United States. J Geod 75(9–10):469–490 doi 10.1007/s001900100200

    Article  Google Scholar 

  • Tziavos IN (1996) Comparisons of spectral techniques for geoid computations over large regions. J Geod 70(6):357–373 doi: 10.1007/s001900050027

    Article  Google Scholar 

  • Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution for the geoid. J Geod 72(12):684–697 doi: 10.1007/s001900050209

    Article  Google Scholar 

  • Vaníček P, Kleusberg A (1987) The Canadian geoid – Stokesian approach. manuscr geod 12(2):86–98

    Google Scholar 

  • Vaníček P, Martinec Z (1994) Stokes-Helmert scheme for the evaluation of a precise geoid. manuscr geod 19(2):119–128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kuhn.

Electronic supplementary material

The 13 files are unfortunately not in the Publisher's archive anymore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, I., Kuhn, M., Claessens, S.J. et al. A synthetic Earth Gravity Model Designed Specifically for Testing Regional Gravimetric Geoid Determination Algorithms. J Geodesy 80, 1–16 (2006). https://doi.org/10.1007/s00190-005-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-005-0002-z

Keywords

Navigation