Skip to main content

Advertisement

Log in

Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10−8 m/s 2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali AH, Zlotnicki V (2003) Quality of wind stress fields measured by the skill of a barotropic ocean model: importance of stability of the marine atmospheric boundary layer. Geophys Res Lett 30(3):1129, doi: 10.1029/2002GL016058

    Article  Google Scholar 

  • Boy JP, Gegout P, Hinderer J (2002) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545

    Article  Google Scholar 

  • Boy JP, Hinderer J (2005) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn (accepted)

  • Boy JP, Hinderer J, Ferhat G (2005) Gravity changes and crustal deformation due to hydrology loading. Geophys Res Abstracts 7:07166

    Google Scholar 

  • Bettadpur S (2004) UTCSR Level-2 processing standards document. GRACE 327–742, http://isdc.gfz-potsdam.de or http://podaac.jpl.nasa.gov/grace/ Bulletin B http://www.iers.org/iers/products/eop/monthly.html

  • Chen JL, Wilson CR, Tapley BD, Ries JC (2004) Low degree gravitational changes from GRACE: validation and interpretation, Geophys Res Lett 31:L22607, doi:10.1029/2004GL021670

    Article  Google Scholar 

  • Cheng MK, Shum CK, Tapley BD (1997) Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 102:22377–22390

    Article  Google Scholar 

  • Crossley D, Hinderer J, Casula O, Francis O, Hsu HT, Imanishi Y, Jentzsch G, Kääriäinen J, Merriam J, Meurers B, Neumeyer J, Richter B, Sato D, Shihuya K, van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. EOS Trans Am Geoph Union 80(11):125–126

    Google Scholar 

  • Crossley D, Hinderer J (2002) GGP ground truth for satellite missions. Bull Inf Marees Terrestres 136:10735–10742

    Google Scholar 

  • Crossley D, Hinderer J, Llubes M, Florsch N (2003) The potential of ground gravity measurements to validate GRACE data. Adv Geosci 1:1–7

    Article  Google Scholar 

  • Crossley D, Hinderer J, Boy JP, (2005) Time variation of the European gravity field from superconducting gravimeters. Geophys J Int 161:257–264, doi:10.1111/j.1365–246X.2005.02586.x

    Article  Google Scholar 

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107 (C11):3186, doi:10.1029/2001JC001224

    Article  Google Scholar 

  • Dehant V (1987) Tidal parameters for an inelastic earth. Phys Earth Planet Int 49:97–116

    Article  Google Scholar 

  • Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Brooks Thomas JB, Tien J, Romans L, Watkins M, Wu S-C, Bettadpur S, Kim J (2003) Instrument of GRACE – GPS augments gravity measurements. GPS World 14(2):16–28

    Google Scholar 

  • Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134

    Article  Google Scholar 

  • Fan Y, van den Dool H (2004) The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present. J Geophys Res 109:D10102, doi:1029/2003JD004345

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10:761–797

    Article  Google Scholar 

  • Flechtner F (2003a) GFZ level-2 processing standards document. GRACE 327–743, http://isdc.gfz-potsdam.de or http://podaac.jpl.nasa.gov/grace/

  • Flechtner F (2003b) AOD1B product description document. GRACE Project Documentation. JPL 327–750, Rev 1.0, JPL Pasadena, Ca. http://podaac.jpl.nasa.gov/grace/daac/doc/AOD1B_20031022.pdf

  • Francis O, Mazzega P (1990) Global charts of ocean tide loading effects. J Geophys Res 95:11411–11424

    Article  Google Scholar 

  • Goodkind J M (1999) The Superconducting gravimeter. Rev Sci Instrum 70/11:4131–4152

    Article  Google Scholar 

  • Han SC, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109:B 04403, doi:10.1029/2003/JB002501

    Google Scholar 

  • Harnisch G, Harnisch M (2002) Seasonal variations of hydrological influences on gravity measurements at Wettzell. Bull D’Inf Marees Terr 137:10849–10861

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman, San Francisco

    Google Scholar 

  • Hinderer J, Legros H (1989) Elasto – gravitational deformation, relative gravity changes and Earth dynamics. Geophys J Int 97: 481–495

    Article  Google Scholar 

  • Huang J, Van den Dool HM, Georgakakos KP (1996) Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J Climate 9:1350–1362

    Article  Google Scholar 

  • Khan SA, Hoyer J (2004) Shallow-water tides in Japan from superconducting gravimetry. J Geod 78:245–250

    Article  Google Scholar 

  • Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geodyn Soc Jpn 47(1):353–358

    Google Scholar 

  • Kroner C, Jahr T (2005) Hydrological experiments around the superconducting gravimeter at Moxa observatory. J Geodyn (accepted)

  • Lefevre F, Lyard FH, Le Provost C, Schrama EJO (2002) FES99: a global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Technol 19:1345–1356

    Article  Google Scholar 

  • Le Provost C, Lyard F, Lefevre F, Roblou L (2002) FES 2002 – A new version of the FES tidal solution series. Abstract Volume Jason-1 Science Working Team Meeting, Biarritz, France

  • Lyard F (1998) Long period tides determination from a hydrodynamic and assimilation tidal model. Study Report, GeoForschungsZentrum Potsdam

  • McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Technical Note 32, IERS Central Bureau, Frankfurt a.M., Germany

  • Meurers B, Van Camp M, Petermans T, Verbeeck K, Vanneste K (2005) Investigation of local atmospheric and hydrological gravity signals in Superconducting Gravimeter time series. Geophys Res Abstracts 7:07463

    Google Scholar 

  • Merriam J B (1992) Atmospheric pressure and gravity. Geophys J Int 109:488–500

    Article  Google Scholar 

  • Milly PCD, Shmakin AB (2002) Global modelling of land water and energy balances Part I: The land dynamics (LaD) model. J Hydrometeorol 3(3):283–299

    Article  Google Scholar 

  • Neumeyer J, Schwintzer P, Barthelmes F, Dierks O, Imanishi Y, Kroner C, Meurers B, Sun HP, Virtanen H (2004a) Comparison of superconducting gravimeter and CHAMP satellite derived temporal gravity variations. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observations with CHAMP Results from three years in orbit, pp 31–36

  • Neumeyer J, Hagedoorn J, Leitloff J, Schmidt T (2004b) Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. J Geodyn 38:437–450

    Article  Google Scholar 

  • Neumeyer J; del Pino J; Dierks O, Pflug H (2004c) Improvement of ocean loading correction on gravity data with additional tide gauge measurements. J Geodyn (accepted)

  • Pick M, Picha J, Vyskocil V (1973) Theory of the Earth‘s gravity field. Publishing House of the Czechoslovak Academy of Sciences, Prague

    Google Scholar 

  • Reigber Ch, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu S Y (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10

    Article  Google Scholar 

  • Rosat S, Hinderer J, Crossley D, Boy JP (2004) Performance of superconducting gravimeters from long-period seismology to tides. J Geodyn 38:461–476

    Article  Google Scholar 

  • Schmidt R, Flechtner F, Meyer Ul, Reigber Ch, Barthelmes F, Foerste Ch, Stubenvoll R, König R, Neumayer KH, Zhu SY (2005a) Static and time-variable gravity from GRACE Mission Data. In: Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U, Flury J (eds) Observation of the Earth system from space, Springer, Berlin Heidelberg New York (in preparation)

  • Schmidt R, Schwintzer P, Flechtner F, Reigber Ch, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2005b) GRACE Observations of Changes in Continental Water Storage. Global and Planetary Change 48/4:259–273

    Google Scholar 

  • Sun H-P (1995) Static deformation and gravity changes at the Earth’s surface due to the atmospheric pressure. Observatoire Royal des Belgique. Serie Geophysique Hors-Serie, Bruxelles

    Google Scholar 

  • Sun H-P, Hsu H-T, Jentzsch G, Xu J-Q (2002) Tidal gravity observations obtained with superconducting gravimeter and its application to geodynamics at Wuhan/China, J Geodyn 33(1–2):187–198

    Article  Google Scholar 

  • Tapley BD, Reigber Ch (2001) The GRACE mission: status and future plans. EOS Trans AGU 82 (47), Fall Meet Suppl G41:C-02

    Google Scholar 

  • Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity anomalies. Geophys Res Lett 31:L06619, doi:10.1029/2003GL019285

    Article  Google Scholar 

  • Torge W (1989) Gravimetry. de Gruyter, Berlin, New York

    Google Scholar 

  • Vaníček P, Krakiwsky EJ (1982) Geodesy: the Concepts. North -Holland, Amsterdam, New York, Oxford

    Google Scholar 

  • Virtanen H (2001) Hydrological studies at the gravity station Metshovi, Finland. J Geodetic Soc Jpn 47(1):328–333

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(12):30205–30229

    Article  Google Scholar 

  • Wahr J (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363–9368

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys Res Lett 31(11):L11501, doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wenzel HG (1996) The nanogal software: data processing package Eterna 3.3. Bull Inf Marees Terrestres 124:9425∼9439

  • Xu JQ, Sun HP, Yang XF (2004) A study of gravity variations caused by polar motion using superconducting gravimeter data from the GGP network. J Geod 78:201–209

    Article  Google Scholar 

  • Zürn W, Wilhelm H (1984) Tides of the Earth. In Landolt-Börnstein, Springer, Berlin Heidelberg New York Tokyo, vol 2, pp 259–299

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Neumeyer.

Additional information

P. Schwintzer has deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumeyer, J., Barthelmes, F., Dierks, O. et al. Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geodesy 79, 573–585 (2006). https://doi.org/10.1007/s00190-005-0014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-005-0014-8

Keywords

Navigation