Skip to main content
Log in

Local Solutions to Inverse Problems in Geodesy

The Impact of the Noise Covariance Structure upon the Accuracy of Estimation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In many geoscientific applications, one needs to recover the quantities of interest from indirect observations blurred by colored noise. Such quantities often correspond to the values of bounded linear functionals acting on the solution of some observation equation. For example, various quantities are derived from harmonic coefficients of the Earth’s gravity potential. Each such coefficient is the value of the corresponding linear functional. The goal of this paper is to discuss new means to use information about the noise covariance structure, which allows order-optimal estimation of the functionals of interest and does not involve a covariance operator directly in the estimation process. It is done on the basis of a balancing principle for the choice of the regularization parameter, which is new in geoscientific applications. A number of tests demonstrate its applicability. In particular, we could find appropriate regularization parameters by knowing a small part of the gravitational field on the Earth’s surface with high precision and reconstructing the rest globally by downward continuation from satellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderssen R (1986) The linear functional strategy for improperly posed problems. In: Cannon J, Hornung U (eds) Inverse problems, proc. conference, Oberwolfach/Ger. 1986, international series of numerical mathematics, vol~77. Birkhäuser, Basel, Boston, Stuttgart, pp 11–30

  • Bauer F (2004) An alternate approach to the oblique derivative problem in potential theory. PhD Thesis, Universtiy of Kaiserslautern, Department of Mathematics, Geomathematics Group

  • Bauer F, Hohage T (2005) A Lepskij-type stopping rule for regularized Newton methods. Inverse Probl 21:1975–1991

    Article  MathSciNet  ADS  Google Scholar 

  • Bauer F, Pereverzev S (2005a) Regularization without preliminary knowledge of smoothness and error behavior. Eur J Appl Math 16(3):303–317

    Article  MathSciNet  Google Scholar 

  • Bauer F, Pereverzev S (2005b) An utilization of a rough approximation of a noise covariance within the framework of multi-parameter regularization (submitted). Int J Tomogr Stat, preprint: ftp://ftpnummathuni-goettingende/pub/preprints/bauer/mainpdf

  • Böttcher A, Hofmann B, Tautenhahn U, Yamamoto M (2006) Convergence rates for Tikhonov regularization from different kind of smoothness conditions. Appl Anal 85, publ. electronically

  • Donoho D (1994) Statistical estimation and optimal recovery. Ann Stat 22(1):238–270

    MathSciNet  Google Scholar 

  • Driscoll J, Healy D (1994) Computing fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15(2):202–250

    Article  MathSciNet  Google Scholar 

  • Engl H, Neubauer A (1994) A parameter choice strategy for (iterated) Tikhonov regularization of ill-posed problems leading to superconvergence with optimal rates. Appl Anal 27(1–3):5–18

    MathSciNet  Google Scholar 

  • Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. In: Mathematics and its applications. Kluwer, Dordrecht, Boston, London

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. In: European consortium for mathematics in industry. B.G. Teubner, Stuttgart Leipzig

  • Freeden W, Mayer T (2002) On multiscale denoising of spherical functions: basic theory and numerical aspects. ETNA 14:56–78

    Google Scholar 

  • Freeden W, Pereverzev S (2001) Spherical Tikhonov regularization wavelets in satellite gravity gradiometry with random noise. J Geod 74:730–736

    Article  Google Scholar 

  • Goldenshluger A, Pereverzev S (2000) Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations. Probab Theory Relat Fields 118(2):169–186

    Article  MathSciNet  Google Scholar 

  • Holmes S, Featherstone W (2002) A unified approach to the clenshaw summation and the recursive computation of very-high degree and order normalised associated legendre functions. J Geod 76(5): 279–299

    Article  Google Scholar 

  • Klees R, Ditmar P, Broersen P (2003) How to handle colored noise in large least-squares problems. J Geod 76: 629–640

    Article  Google Scholar 

  • Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368

    Article  Google Scholar 

  • Lemoine F, Kenyon S, Factor J, Trimmer R, Pavlis N, Chinn D, Cox C, Klosko S, Luthcke S, Torrence M, Wang Y, Williamson R, Rapp R, Olson T (1998) The development of the joint nasa/gsfc and the national imagery and mapping agency (NIMA) geopotential models, EGM96. NASA, Greenbelt TP-1998-206861, pp 575

  • Lepskii O (1990) On a problem of adaptive estimation in Gaussian white noise. Theory Probab Appl 35(3):454–466

    Article  MathSciNet  Google Scholar 

  • Lonkhuyzen M, Klees R, Bouman J (2001) Regularization for the gravity field recovery from goce observations. In: Proceedings of the IAG international Symposium of Gravity, geoid geodynamics 2000, Banff. Springer, Berlin Heidelberg New York

  • Mathé P (2004) Saturation of regularization methods for linear ill-posed problems in Hilbert spaces. SIAM J Numer Anal 42(3):968–973

    Article  MathSciNet  Google Scholar 

  • Mathé P, Pereverzev S (2002) Direct estimation of linear functionals from indirect noisy observations. J Complex 18(2):501–516

    Google Scholar 

  • Mathé P, Pereverzev S (2003) Geometry of linear ill-posed problems in variable hilbert spaces. Inverse Probl 19(3):789–803

    Article  ADS  Google Scholar 

  • Mathé P, Pereverzev S (2005) Regularization of some linear inverse problems with discretized random noise data (to appear Math. of Comput.)

  • Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J Geod 76:462–474

    Article  Google Scholar 

  • Pereverzev S, Schock E (1999) Error estimates for band-limited spherical regularization wavelets in an inverse problem of satellite geodesy. Inverse Probl 15(4):881–890

    Article  MathSciNet  ADS  Google Scholar 

  • Rebhan H, Aguirre M, Johannessen J (2000) The gravity field and steady-state ocean circulation explorer mission – GOCE. ESA Earth Obs Q 66:6–11

    Google Scholar 

  • Rummel R, Reigber C, Ilk K (1978) The use of satellite-to-satellite tracking for gravity parameter recovery. In: ESA workshop on space oceanography, navigation and geodynamics (SONG), ESA-SP-137, pp 151–161

  • Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions – principles and aims. J Geodyn 33:3–20

    Article  Google Scholar 

  • Sansó F, Sona G (1995) The theory of optimal linear estimation for continuous fields of measurements. Manuscri Geodaet 20:204–230

    Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 – an improved earth gravity field model from GRACE. J Geod 79(8):467–478

    Article  ADS  Google Scholar 

  • Tscherning C (1986) Mathematical and numerical techniques in physical geodesy. In: Functional methods for gravity field approximation. Springer, Berlin Heidelberg New York, pp 3–47

  • Tsybakov A (2000) On the best rate of adaptive estimation in some inverse problems. C R Acad Sci Paris Sér I Math 330(9):835–840

    MathSciNet  Google Scholar 

  • Xu P (1998) Truncated SVD methods for linear discrete ill-posed problems. Geophys J Int 135:505–514

    Article  ADS  Google Scholar 

  • Xu P, Rummel R (1994) A generalized ridge regression method with applications in determination of potential fields. Manuscr Geodaet 20(1):8–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, F., Mathé, P. & Pereverzev, S. Local Solutions to Inverse Problems in Geodesy. J Geod 81, 39–51 (2007). https://doi.org/10.1007/s00190-006-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0049-5

Keywords

Mathematics Subject Classification (2000)

Navigation